- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的中位数
- + 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解某校高二
名学生的体能情况,随机抽查部分学生,测试
分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是( )




A.该校高二学生![]() ![]() ![]() |
B.该校高二学生![]() ![]() ![]() |
C.该校高二学生![]() ![]() |
D.该校高二学生![]() ![]() |
从参加某次高中英语竞赛的学生中抽出100名,将其成绩整理后,绘制频率分布直方图(如图所示).其中样本数据分组区间为:
,
,
,
,
,
.

(Ⅰ)试求图中
的值,并计算区间
上的样本数据的频率和频数;
(Ⅱ)试估计这次英语竞赛成绩的众数、中位数及平均成绩(结果精确到
).
注:同一组数据用该组区间的中点值作为代表







(Ⅰ)试求图中


(Ⅱ)试估计这次英语竞赛成绩的众数、中位数及平均成绩(结果精确到

注:同一组数据用该组区间的中点值作为代表
某校高三年级进行了一次学业水平测试,用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计,成绩的分组及各组的频数如下:
,2;
,3;
,10;
15;
,12;
,8.
(1)完成样本的频率分布表,画出频率分布直方图;

(2)估计成绩在85分以下的学生比例;
(3)请你根据以上信息去估计样本的众数、中位数、平均数(精确到0.01).




15;


(1)完成样本的频率分布表,画出频率分布直方图;

(2)估计成绩在85分以下的学生比例;
(3)请你根据以上信息去估计样本的众数、中位数、平均数(精确到0.01).
某科技研究所对一批新研发的产品长度进行检测(单位:
),下图是检测结果的频率分布直方图,据此估计这批产品的中位数为( )



A.20 | B.22.5 | C.22.75 | D.25 |
2016年6月22日“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在15—75岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为:
.把年龄落在区间自
和
内的人分别称为“青少年”和“中老年”.

(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数;
(2)根据已知条件完成下面的
列联表,并判断能否有
的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;
临界值表:
附:参考公式
,其中
.




| 关注 | 不关注 | 合计 |
青少年 | 15 | | |
中老年 | | | |
合计 | 50 | 50 | 100 |
(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数;
(2)根据已知条件完成下面的


临界值表:
附:参考公式
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |


2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在
岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为:
,
,
,
,
,
.把年龄落在区间
和
内的人分别称为“青少年”和“中老年”.
(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数
(2)根据已知条件完成下面的2×2列联表,并判断能否有99%的把握认为关注“带一路”是否和年龄段有关?

附:参考公式
,其中
临界值表:









(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数
(2)根据已知条件完成下面的2×2列联表,并判断能否有99%的把握认为关注“带一路”是否和年龄段有关?

| 关注 | 不关注 | 合计 |
青少年 | 15 | | |
中老年 | | | |
合计 | 50 | 50 | 100 |
附:参考公式


临界值表:
![]() | 0.05 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如表:
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为
.
(1)确定
,
,
,
的值,并补全频率分布直方图;

(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
网购金额 (单位:千元) | 频数 | 频率 |
![]() | 3 | ![]() |
![]() | ![]() | ![]() |
![]() | 9 | ![]() |
![]() | 15 | ![]() |
![]() | 18 | ![]() |
![]() | ![]() | ![]() |
合计 | 60 | ![]() |
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为

(1)确定





(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.

(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合计 | M | 1 |

(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
某校进行文科、理科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.

(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;(精确到0.01)
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:

参考公式与临界值表:

(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;(精确到0.01)
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:

参考公式与临界值表:

![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |