- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的中位数
- + 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解某校一次期中考试数学成绩情况,抽取100位学生的数学成绩,得如图所示的频率分布直方图,其中成绩分组区间是
,则估计该次数学成绩的中位数是( )




A.71.5 | B.71.8 | C.72 | D.75 |
2018年高考特别强调了要增加对数学文化的考查,为此某校高三年级特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试,现从这些学生中随机抽取了50名学生的成绩,按照成绩为
,
,…,
分成了5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).
(Ⅰ)求频率分布直方图中的
的值,并估计所抽取的50名学生成绩的中位数(用分数表示);
(Ⅱ)若利用分层抽样的方法从样本中成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取2人参加这次考试的考后分析会,试求
组中至少有1人被抽到的概率.



(Ⅰ)求频率分布直方图中的

(Ⅱ)若利用分层抽样的方法从样本中成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取2人参加这次考试的考后分析会,试求


“你低碳了吗?”这是某市为倡导建设节约型社会而发布的公益广告里的一句话,活动组织者为了了解这则广告的宣传效果,随机抽取了120名年龄在
,
,…,
的市民进行问卷调查,由此得到的样本的频率分布直方图如图所示.

(1)根据直方图填写频率分布统计表;
(2)根据直方图,试估计受访市民年龄的中位数(保留整数);
(3)如果按分层抽样的方法,在受访市民样本年龄在
中共抽取5名市民,再从这5人中随机选2人作为本次活动的获奖者,求年龄在
和
的受访市民恰好各有一人获奖的概率.




(1)根据直方图填写频率分布统计表;
(2)根据直方图,试估计受访市民年龄的中位数(保留整数);
(3)如果按分层抽样的方法,在受访市民样本年龄在



分组 | 频数 | 频率 |
![]() | 18 | 0.15 |
![]() | 30 | |
![]() | | |
![]() | | 0.2 |
![]() | 6 | 0.05 |
某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如下频率分布直方图:

(1)求直方图中
的值;
(2)根据频率分布直方图估计样本数据的众数、中位数各是多少(结果保留整数);
(3)由频率分布直方图可以认为,这种产品的质量指标值
服从正态分布
,试计算数据落在
上的概率.
(参考数据:若
,则
,
)

(1)求直方图中

(2)根据频率分布直方图估计样本数据的众数、中位数各是多少(结果保留整数);
(3)由频率分布直方图可以认为,这种产品的质量指标值



(参考数据:若



某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分
布直方图:

(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(2)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次.规定:这2次成绩均来自到篮筐中心的水平距离为4到5米的这一组,记 1分,否则记0分.求该运动员得1分的概率.
布直方图:

(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(2)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次.规定:这2次成绩均来自到篮筐中心的水平距离为4到5米的这一组,记 1分,否则记0分.求该运动员得1分的概率.
某电子商务公司对10000名网络购物者2017年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.

⑴.求直方图中的a的值
⑵.估计这10000名网络购物者在2017年度的消费的中位数和平均数。

⑴.求直方图中的a的值
⑵.估计这10000名网络购物者在2017年度的消费的中位数和平均数。