- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的中位数
- + 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(题文)(题文)某高中为了选拔学生参加“全国中学生英语能力竞赛(
)”,先在本校进行初赛(满分
分),若该校有
名学生参加初赛,并根据初赛成绩得到如图
所示的频率分布直方图.

(1)根据频率分布直方图,计算这
名学生参加初赛成绩的中位数;
(2)该校推荐初赛成绩在
分以上的学生代表学校参加竞赛,为了了解情况,在该校推荐参加竞赛的学生中随机抽取
人,求选取的三人的初赛成绩在频率分布直方图中处于同组的概率.





(1)根据频率分布直方图,计算这

(2)该校推荐初赛成绩在


某城市100户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.

(1)求直方图中
的值;
(2)求月平均用电量的众数和中位数.








(1)求直方图中

(2)求月平均用电量的众数和中位数.
某校
届高三文(1)班在一次数学测验中,全班
名学生的数学成绩的频率分布直方图如下,已知分数在
的学生数有
人.

(1)求总人数
和分数在
的人数
;
(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?
(3)现在从比分数在
名学生(男女生比例为
)中任选
人,求其中至多含有
名男生的概率.





(1)求总人数



(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?
(3)现在从比分数在




某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].已知图中x=0.018,则由直观图估算出中位数(精确到0.1)的值为( )


A.75.5 | B.75.2 | C.75.1 | D.75.3 |
为了解学生答卷情况,某市教育部门在高三某次测试后抽取了
名同学的试卷进行调查,并根据所得数据画出了样本的频率分布直方图(如图),该样本的中位数是__________.


在某单位的职工食堂中,食堂每天以
元/个的价格从面包店购进面包,然后以
元/个的价格出售.如果当天卖不完,剩下的面包以
元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了
个面包,以
(单位:个,
)表示面包的需求量,
(单位:元)表示利润.

(Ⅰ)求
关于
的函数解析式;
(Ⅱ)求食堂每天面包需求量的中位数;
(Ⅲ)根据直方图估计利润
不少于
元的概率;








(Ⅰ)求


(Ⅱ)求食堂每天面包需求量的中位数;
(Ⅲ)根据直方图估计利润


某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段
,
,…,
,画出如下图所示的部分频率分布直方图,请观察图形信息,回答下列问题:

(1)估计这次考试中数学学科成绩的中位数;
(2)现根据本次考试分数分成下列六段(从低分段到高分段依次为第一组、第二组、…、第六组)为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差大于30分(以分数段为依据,不以具体学生分数为依据),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.




(1)估计这次考试中数学学科成绩的中位数;
(2)现根据本次考试分数分成下列六段(从低分段到高分段依次为第一组、第二组、…、第六组)为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差大于30分(以分数段为依据,不以具体学生分数为依据),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.
某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率。
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率。

为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成 5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示.成绩落在[70,80)中的人数为20.
(Ⅰ)求a和n的值;
(Ⅱ)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数
和中位数m;
(Ⅲ)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.
参考公式和数据:K2=
.

| 男生 | 女生 | 合计 |
优秀 | | | |
不优秀 | | | |
合计 | | | |
(Ⅰ)求a和n的值;
(Ⅱ)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数

(Ⅲ)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.
参考公式和数据:K2=

P(K2≥k) | 0.50 | 0.05 | 0.025 | 0.005 |
k | 0.455 | 3.841 | 5.024 | 7.879 |

从某校参加高二年级学业水平考试模拟考试的学生中抽取60名学生,将其数学成绩分成6段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,画出如图的频率分布直方图.根据图形信息,解答下列问题:
(1)估计这次考试成绩的众数,中位数,平均数;
(2)估计这次考试成绩的及格率(60分及其以上为及格).
(1)估计这次考试成绩的众数,中位数,平均数;
(2)估计这次考试成绩的及格率(60分及其以上为及格).
