2017年“十一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速()分成六段: ,后得到如图的频率分布直方图.

(1)求这40辆小型车辆车速的众数和中位数的估计值;
(2)若从车速在的车辆中任抽取2辆,求车速在的车辆恰有一辆的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,绘制成如图所示的频率分布直方图.

(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);
(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
市政府为了节约用水,调查了100位居民某年的月均用水量(单位:),频数分布如下:
分组









频数
4
8
15
22
25
14
6
4
2
 

(1)根据所给数据将频率分布直方图补充完整(不必说明理由);
(2)根据频率分布直方图估计本市居民月均用水量的中位数;
(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).
当前题号:3 | 题型:解答题 | 难度:0.99
某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.
(1)求图中x的值;
(2)求这组数据的中位数;
(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
下列说法正确的个数是(   )
①一组数据的标准差越大,则说明这组数据越集中;
②曲线与曲线的焦距相等;
③在频率分布直方图中,估计的中位数左边和右边的直方图的面积相等;
④已知椭圆,过点作直线,当直线斜率为时,M刚好是直线被椭圆截得的弦AB的中点.
A.1B.2C.3D.4
当前题号:5 | 题型:单选题 | 难度:0.99
某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照,…,分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)
(Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);
(Ⅱ)求用户用水费用(元)关于月用水量(吨)的函数关系式;
(Ⅲ)如图2是该县居民李某2017年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是.若李某2017年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.
当前题号:6 | 题型:解答题 | 难度:0.99
(多选题)下列说法中正确的是(   )
A.在频率分布直方图中,中位数左边和右边的直方图的面积相等.
B.若AB为互斥事件,则A的对立事件与B的对立事件一定互斥.
C.某个班级内有40名学生,抽10名同学去参加某项活动,则每4人中必有1人抽中.
D.若回归直线的斜率,则变量正相关.
当前题号:7 | 题型:多选题 | 难度:0.99