- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- + 茎叶图
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- 观察茎叶图比较数据的特征
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
泉州有四处湿地被列入福建省首批重要湿地名录,某同学决定从其中A,B两地选择一处进行实地考察.因此,他通过网站了解上周去过这两个地方的人对它们的综合评分,并将评分数据记录为右图的茎叶图,记A,B两地综合评分数据的均值分别为
,
,方差分别为
,
若以备受好评为依据,则下述判断较合理的是( )






A.因为![]() ![]() ![]() ![]() |
B.因为![]() ![]() ![]() ![]() |
C.因为![]() ![]() ![]() ![]() |
D.因为![]() ![]() ![]() ![]() |
某篮球运动员在2015赛季各场比赛得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50.制作茎叶图,并分析这个运动员的整体水平及发挥的稳定程度.
为迎接2022年北京冬季奥运会,某校开设了冰球选修课,12名学生被分成甲、乙两组进行训练他们的身高(单位:cm)如茎叶图所示:

设两组队员身高的平均数依次为
,
,方差依次为
,
,则下列关系式中正确的是( )

设两组队员身高的平均数依次为




A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
某学生在一门功课的22次考试中,所得分数的茎叶图所示,则此学生该门功课考试成绩的极差与中位数之和为( )


A.117 | B.118 |
C.118.5 | D.119.5 |
甲、乙两名篮球运动员5场比赛得分的原始记录如茎叶图所示,若甲、乙两人的平均得分分别为
甲,
乙,则下列结论正确的是( )




A.![]() ![]() | B.![]() ![]() |
C. ![]() ![]() | D.![]() ![]() |
为了了解某校高三年级800名学生的体能状况,研究人员在该校高三学生中抽取了10名学生的体能测试成绩进行统计,统计结果如图所示,已知这10名学生体能测试的平均成绩为85分.

(1)求
的值以及这10名学生体能测试成绩的方差;
(2)若从上述成绩在90分以下的学生中随机抽取3名,求恰有1人成绩为82分的概率;
(3)为了研究高三男、女生的体能情况,现对该校高三所有学生的体能测试成绩进行分类统计,得到的数据如下表所示:
试判断是否有99.9%的把握认为体能测试成绩是否超过80分与性别具有相关性.
参考公式:
,其中
.
临界值表:

(1)求

(2)若从上述成绩在90分以下的学生中随机抽取3名,求恰有1人成绩为82分的概率;
(3)为了研究高三男、女生的体能情况,现对该校高三所有学生的体能测试成绩进行分类统计,得到的数据如下表所示:
| 男生 | 女生 |
体能测试成绩超过80分 | 300 | 250 |
体能测试成绩不超过80分 | 100 | 150 |
试判断是否有99.9%的把握认为体能测试成绩是否超过80分与性别具有相关性.
参考公式:


临界值表:
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
某科技攻关青年团队共有20人,他们的年龄分布如下表所示.
(1)求这20人年龄的众数、极差、平均数、方差、25%分位数、75%分位数;
(2)用茎叶图表示这20人的年龄.
年龄 | 28 | 29 | 30 | 32 | 36 | 40 | 45 |
人数 | 1 | 3 | 3 | 5 | 4 | 3 | 1 |
(1)求这20人年龄的众数、极差、平均数、方差、25%分位数、75%分位数;
(2)用茎叶图表示这20人的年龄.
某班男女生各10名同学最近一周平均每天的锻炼时间(单位:分钟)用茎叶图记录如下:

假设每名同学最近一周平均每天的锻炼时间是互相独立的.
①男生每天锻炼的时间差别小,女生每天锻炼的时间差别大;
②从平均值分析,男生每天锻炼的时间比女生多;
③男生平均每天锻炼时间的标准差大于女生平均每天锻炼时间的标准差;
④从10个男生中任选一人,平均每天的锻炼时间超过65分钟的概率比同样条件下女生锻炼时间超过65分钟的概率大.
其中符合茎叶图所给数据的结论是( )

假设每名同学最近一周平均每天的锻炼时间是互相独立的.
①男生每天锻炼的时间差别小,女生每天锻炼的时间差别大;
②从平均值分析,男生每天锻炼的时间比女生多;
③男生平均每天锻炼时间的标准差大于女生平均每天锻炼时间的标准差;
④从10个男生中任选一人,平均每天的锻炼时间超过65分钟的概率比同样条件下女生锻炼时间超过65分钟的概率大.
其中符合茎叶图所给数据的结论是( )
A.①②③ | B.②③④ | C.①②④ | D.①③④ |