- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- + 茎叶图
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- 观察茎叶图比较数据的特征
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某甲、乙两人练习跳绳,每人练习10组,每组40个.每组计数的茎叶图如下图,则下面结论中错误的一个是( )


A.甲比乙的极差大 |
B.乙的中位数是18 |
C.甲的平均数比乙的大 |
D.乙的众数是21 |
某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:
品种A:357,359,367,368,375,388,392,399,400,405,412, 414,415,421,423,423,427,430,430,434,443,445,445,451,454
品种B:363,371,374,383,385,386,391,392,394,394,395, 397,397,400,401,401,403,406,407,410,412,415,416,422,430
(1)作出茎叶图;
(2)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.
品种A:357,359,367,368,375,388,392,399,400,405,412, 414,415,421,423,423,427,430,430,434,443,445,445,451,454
品种B:363,371,374,383,385,386,391,392,394,394,395, 397,397,400,401,401,403,406,407,410,412,415,416,422,430
(1)作出茎叶图;
(2)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数
,并将完成生产任务所需时间超过
和不超过
的工人数填入下面的列联表:
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:
,

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数



| 超过![]() | 不超过![]() |
第一种生产方式 | | |
第二种生产方式 | | |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:

![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
某中学高三从甲、乙两个班中各选出
名学生参加数学竞赛,他们取得的成绩(满分
分)的茎叶如图,其中甲班学生成绩的众数是
,乙班学生成绩的中位数是
,則
的值为( )







A.![]() | B.![]() | C.![]() | D.![]() |
某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔一小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据茎叶如图所示.

(Ⅰ)根据样本数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对稳定;
(Ⅱ)若从乙车间
件样品中随机抽取两件,求所抽取两件样品重量之差不超过
克的概率.

(Ⅰ)根据样本数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对稳定;
(Ⅱ)若从乙车间


某县应国家号召,积极开展了建设新农村活动,实行以奖代补,并组织有关部门围绕新农村建设中的三个方面(新设施,新环境,新风尚)对各个村进行综合评分,高分(大于88分)的村先给予5万元的基础奖励,然后比88分每高一分,奖励增加5千元,低分(小于等于75分)的村给予通报,取消5万元的基础奖励,且比75分每低1分,还要扣款1万元,并要求重新整改建设,分数在
之间的只享受5万元的基础奖励,下面是甲、乙两个乡镇各10个村的得分数据(单位:分):
甲:62,74,86,68,97,75,88,98,76,99;
乙:71,81,72,86,91,77,85,78,83,84.

(1)根据上述数据完成如图的茎叶图,并通过茎叶图比较两个乡镇各10个村的得分的平均值及分散程度;(不要求计算具体的数值,只给出结论即可)
(2)为继续做好新农村的建设工作,某部门决定在这两个乡镇中任选两个低分村进行帮扶重建,求抽取的两个村中,两个乡镇中各有一个村的概率;
(3)从获取奖励的角度看,甲、乙两个乡镇哪个获取的奖励多?(需写出计算过程)

甲:62,74,86,68,97,75,88,98,76,99;
乙:71,81,72,86,91,77,85,78,83,84.

(1)根据上述数据完成如图的茎叶图,并通过茎叶图比较两个乡镇各10个村的得分的平均值及分散程度;(不要求计算具体的数值,只给出结论即可)
(2)为继续做好新农村的建设工作,某部门决定在这两个乡镇中任选两个低分村进行帮扶重建,求抽取的两个村中,两个乡镇中各有一个村的概率;
(3)从获取奖励的角度看,甲、乙两个乡镇哪个获取的奖励多?(需写出计算过程)
近年来,昆明加大了特色农业建设,其中花卉产业是重要组成部分.昆明斗南毗邻滇池东岸,是著名的花都,有“全国10支鲜花7支产自斗南”之说,享有“金斗南”的美誉.为进一步了解鲜花品种的销售情况,现随机抽取甲、乙两户斗南花农,对其连续5日的玫瑰花日销售情况进行跟踪调查,将日销售量作为样本绘制成茎叶图如下,单位:扎(20支/扎).

(1)求甲、乙两户花农连续5日的日均销售量,并比较两户花农连续5日销售量的稳定性;
(2)从两户花农连续5日的销售量中各随机抽取一个,求甲的销售量比乙的销售量高的概率·

(1)求甲、乙两户花农连续5日的日均销售量,并比较两户花农连续5日销售量的稳定性;
(2)从两户花农连续5日的销售量中各随机抽取一个,求甲的销售量比乙的销售量高的概率·
某班有甲乙两个物理科代表,从若干次物理考试中,随机抽取八次成绩的茎叶图(其中茎为成绩十位数字,叶为成绩的个位数字)如下:

(1)分别求甲、乙两个科代表成绩的中位数;
(2)分别求甲、乙两个科代表成绩的平均数,并说明哪个科代表的成绩更稳定;
(3)将频率视为概率,对乙科代表今后三次考试的成绩进行预测,记这三次成绩中不低于90分的次数为
,求
的分布列及均值.

(1)分别求甲、乙两个科代表成绩的中位数;
(2)分别求甲、乙两个科代表成绩的平均数,并说明哪个科代表的成绩更稳定;
(3)将频率视为概率,对乙科代表今后三次考试的成绩进行预测,记这三次成绩中不低于90分的次数为


某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理2017年12个月期间甲、乙两地月接待游客量(单位:万人)的数据的茎叶图如下图,则甲、乙两地游客数量方差的大小( )


A.甲比乙小 | B.乙比甲小 | C.甲、乙相等 | D.无法确定 |