- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 茎叶图的优缺点与适用对象
- + 绘制茎叶图
- 补全茎叶图中的数据
- 观察茎叶图比较数据的特征
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
某校要从甲、乙两名同学中选择一人参加该市组织的数学竞赛,已知甲、乙两名同学最近7次模拟竞赛的数学成绩(满分100分)如下:
甲:79,81,83,84,85,90,93;
乙:75,78,82,84,90,92,94.
(1)完成答题卡中的茎叶图;
(2)分别计算甲、乙两名同学最近7次模拟竞赛成绩的平均数与方差,并由此判断该校应选择哪位同学参加该市组织的数学竞赛.
甲:79,81,83,84,85,90,93;
乙:75,78,82,84,90,92,94.
(1)完成答题卡中的茎叶图;
(2)分别计算甲、乙两名同学最近7次模拟竞赛成绩的平均数与方差,并由此判断该校应选择哪位同学参加该市组织的数学竞赛.
从两个班中各随机抽取10名学生,他们的数学成绩如下,通过作茎叶图,分析哪个班学生的数学学习情况更好一些.
甲班 | 76 | 74 | 82 | 96 | 66 | 76 | 78 | 72 | 52 | 68 |
乙班 | 86 | 84 | 62 | 76 | 78 | 92 | 82 | 74 | 88 | 85 |
某车间20名工人年龄数据如下表:

(1)求这20名工人年龄的众数与极差;
(2)以这十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.

(1)求这20名工人年龄的众数与极差;
(2)以这十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.
为了了解上、下班时期的交通情况,某市抽取了12辆机动车行驶的时速,得到了如下数据 (单位:km/h).
上班时期:30 33 18 27 32 40 26 28 21 28 35 20
下班时期:27 19 32 29 36 29 30 22 25 16 17 30
用茎叶图表示这些数据,并分别估计出该市上、下班时期机动车行驶的平均时速.
上班时期:30 33 18 27 32 40 26 28 21 28 35 20
下班时期:27 19 32 29 36 29 30 22 25 16 17 30
用茎叶图表示这些数据,并分别估计出该市上、下班时期机动车行驶的平均时速.
某次“讲文明、树新风”答题竞赛中,20名选手答对的题目数分别如下:30,26,23,21,18,27,28,26,23,30,26,28,27,24,21,19,27,28,26,29.作出这组数的茎叶图.
为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
(1)画出茎叶图,由茎叶图分别求出甲、乙运动员的中位数;
(2)估计甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)画出茎叶图,由茎叶图分别求出甲、乙运动员的中位数;
(2)估计甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.
农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:cm):
甲:9,10,11,12,10,20;
С:8,14,13,10,12,21.
(1)选择合适的统计图表表示上述数据;
(2)分别计算两组数据的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
甲:9,10,11,12,10,20;
С:8,14,13,10,12,21.
(1)选择合适的统计图表表示上述数据;
(2)分别计算两组数据的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
某科技攻关青年团队共有20人,他们的年龄分布如下表所示.
(1)求这20人年龄的众数、极差、平均数、方差、25%分位数、75%分位数;
(2)用茎叶图表示这20人的年龄.
年龄 | 28 | 29 | 30 | 32 | 36 | 40 | 45 |
人数 | 1 | 3 | 3 | 5 | 4 | 3 | 1 |
(1)求这20人年龄的众数、极差、平均数、方差、25%分位数、75%分位数;
(2)用茎叶图表示这20人的年龄.