- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- + 茎叶图
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- 观察茎叶图比较数据的特征
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为
,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么输出的结果是( )





A.9 | B.8 | C.7 | D.6 |
奖饭店推出甲.乙两种新菜品,为了了解两种菜品的受欢迎程度,现统计一周内两种菜品每天的销售量,得到下面的茎叶图.下列说法中,不正确的是( )


A.甲菜品销售量的众数比乙菜品销售量的众数小 |
B.甲菜品销售量的中位数比乙菜品销售量的中位数小 |
C.甲菜品销售量的平均值比乙菜品销售量的平均值大 |
D.甲菜品销售量的方差比乙菜品销售量的方差大. |
为研究男、女生的身高差异,现随机从高二某班选出男生、女生各
人,并测量他们的身高,测量结果如下(单位:厘米):
男:

女:

根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值.

请根据测量结果得到
名学生身高的中位数中位数
(单位:厘米),将男、女身高不低于
和低于
的人数填入下表中,并判断是否有
的把握认为男、女身高有差异?

参照公式:

若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高,假设可以用测量结果的频率代替概率,试求从高三的男生中任意选出2人,恰有1人身高属于正常的概率.

男:










女:



















参照公式:



国家环境标准制定的空气质量指数与空气质量等级对应关系如表:
由全国重点城市环境监测网获得10月份某五天甲城市和乙城市的空气质量指数数据用茎叶图表示如图:

(1)试根据上面的统计数据,计算甲、乙两个城市的空气质量指数的方差;
(2)试根据上面的统计数据,估计甲城市某一天空气质量等级为2级良的概率;
(3)分别从甲城市和乙城市的统计数据中任取一个,试求两个城市空气质量等级相同的概率.供参考数据:292+532+572+752+1062=23760,432+412+552+582+782=16003
空气质量指数 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
空气质量等级 | 1级优 | 2级良 | 3级轻 度污染 | 4级中度污染 | 5级重 度污染 | 6级严重污染 |
由全国重点城市环境监测网获得10月份某五天甲城市和乙城市的空气质量指数数据用茎叶图表示如图:

(1)试根据上面的统计数据,计算甲、乙两个城市的空气质量指数的方差;
(2)试根据上面的统计数据,估计甲城市某一天空气质量等级为2级良的概率;
(3)分别从甲城市和乙城市的统计数据中任取一个,试求两个城市空气质量等级相同的概率.供参考数据:292+532+572+752+1062=23760,432+412+552+582+782=16003
某校举行演讲比赛,9位评委给选手
打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的
)无法看清,若统计员计算无误,则数字
应该是( )





A.5 | B.4 | C.3 | D.2 |
如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
某数学教师为了解
、
两个班级学生的数学竞骞成绩,将两个班级各10名参加竞赛选拔考试的成绩绘成茎叶图如图所示.设
、
两班的平均成绩分别为
,中位数分别为
、
,则












A.![]() | B.![]() |
C.![]() | D.![]() |
某4S店开展汽车销售业绩比赛,现统计甲、乙两名销售员连续5个月的销售业绩(单位:台)的茎叶图如图所示.

(1)作为业务主管的你认为谁的销售情况好?请说明理由;
(2)若分别从甲、乙的销售业绩中任取一次,求两人中至少有一人销售业绩在80台以上的概率.

(1)作为业务主管的你认为谁的销售情况好?请说明理由;
(2)若分别从甲、乙的销售业绩中任取一次,求两人中至少有一人销售业绩在80台以上的概率.
某生产企业对其所生产的甲、乙两种产品进行质量检测,分别各抽查6件产品,检测其重量的误差,测得数据如下(单位:
):
甲:13 15 13 8 14 21
乙:15 13 9 8 16 23
(1)画出样本数据的茎叶图;
(2)分别计算甲、乙两组数据的方差并分析甲、乙两种产品的质量(精确到0.1)。

甲:13 15 13 8 14 21
乙:15 13 9 8 16 23
(1)画出样本数据的茎叶图;
(2)分别计算甲、乙两组数据的方差并分析甲、乙两种产品的质量(精确到0.1)。
军训时,甲、乙两名同学进行射击比赛,共比赛10场,每场比赛各射击四次,且用每场击中环数之和作为该场比赛的成绩.数学老师将甲、乙两名同学的10场比赛成绩绘成如图所示的茎叶图,并给出下列4个结论:(1)甲的平均成绩比乙的平均成绩高;(2)甲的成绩的极差是29;(3)乙的成绩的众数是21;(4)乙的成绩的中位数是18.则这4个结论中,正确结论的个数为( )


A.1 | B.2 | C.3 | D.4 |