- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- + 茎叶图
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- 观察茎叶图比较数据的特征
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市为了了解民众对开展创建文明城市工作以来的满意度,随机调查了40名群众,并将他们随机分成A,B两组,每组20人,A组群众给第一阶段的创文工作评分,B组群众给第二阶段的创文工作评分,根据两组群众的评分绘制了如图茎叶图:

根据茎叶图比较群众对两个阶段创文工作满意度评分的平均值及集中程度
不要求计算出具体值,给出结论即可
;
根据群众的评分将满意度从低到高分为三个等级:
由频率估计概率,判断该市开展创文工作以来哪个阶段的民众满意率高?说明理由.
完成下面的列联表,并根据列联表判断是否有
的把握认为民众对两个阶段创文工作的满意度存在差异?
附:





满意度评分 | 低于70分 | 70分到89分 | 不低于90分 |
满意度等级 | 不满意 | 满意 | 非常满意 |



| 低于70分 | 不低于70分 |
第一阶段 | | |
第二阶段 | | |
附:

![]() | ![]() | ![]() | ![]() |
k | ![]() | ![]() | ![]() |
2018年“双十一”全网销售额达
亿元,相当于全国人均消费
元,同比增长
,监测参与“双十一”狂欢大促销的
家电商平台有天猫、京东、苏宁易购、网易考拉在内的综合性平台,有拼多多等社交电商平台,有敦煌网、速卖通等出口电商平台.某大学学生社团在本校
名大一学生中采用男女分层抽样,分别随机调查了若干个男生和
个女生的网购消费情况,制作出男生的频率分布表、直方图(部分)和女生的茎叶图如下:

男生直方图

女生茎叶图
(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).
(2)若网购为全国人均消费的三倍以上称为“剁手党”,估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足
元的同学中随机抽取
人发放纪念品,则
人都是女生的概率为多少?
(3)用频率估计概率,从全市所有高校大一学生中随机调查
人,求其中“剁手党”人数的分布列和期望.







男生直方图
分组(百元) | 男生人数 | 频率 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | |
![]() | | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
合计 | | ![]() |

女生茎叶图
(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).
(2)若网购为全国人均消费的三倍以上称为“剁手党”,估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足



(3)用频率估计概率,从全市所有高校大一学生中随机调查

某校连续5天对同学们穿校服的情况进行统计,没有穿校服的人数用茎叶图表示,如图,若该组数据的平均数为18,则
=_____________.


如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩
单位:分
,已知甲组数据的中位数为17,乙组数据的平均数为
,则x、y的值分别为





A.7、8 | B.5、7 |
C.8、5 | D.7、7 |
某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(1) 试估计哪个班级学生平均上网的时间较长。
(2)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.
(1) 试估计哪个班级学生平均上网的时间较长。
(2)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.

甲、乙两位运动员在
场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为
,
,则下列判断正确的是( )





A.![]() | B.![]() |
C.![]() | D.![]() |
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从360天的市区PM2.5监测数据中,随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(1)以这15天的PM2.5日均值来估计这360天的空气质量情况,则其中大约有多少天的空气质量达到一级.
(2)从这15天的数据中任取3天的数据,记X表示空气质量达到一级的天数,求X的分布列;
| PM2.5 日均值(微克/立方米) |
2 | 8 5 |
3 | 2 1 4 3 |
4 | 4 5 |
6 | 3 8 |
7 | 9 |
8 | 6 3 |
9 | 2 5 |
(1)以这15天的PM2.5日均值来估计这360天的空气质量情况,则其中大约有多少天的空气质量达到一级.
(2)从这15天的数据中任取3天的数据,记X表示空气质量达到一级的天数,求X的分布列;
为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a表示.

(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值,求图中a的所有可能取值;
(Ⅱ)将甲、乙两组中阅读量超过15本的学生称为“阅读达人”. 设
,现从所有的“阅读达人”里任取2人,求至少有1人来自甲组的概率;
(Ⅲ)记甲组阅读量的方差为
. 若在甲组中增加一个阅读量为10的学生,并记新得到的甲组阅读量的方差为
,试比较
,
的大小.(结论不要求证明)
(注:
,其中
为数据
的平均数)

(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值,求图中a的所有可能取值;
(Ⅱ)将甲、乙两组中阅读量超过15本的学生称为“阅读达人”. 设

(Ⅲ)记甲组阅读量的方差为




(注:



中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为( )


A.6 | B.5 | C.4 | D.2 |
为全面地了解学生对任课教师教学的满意程度,特在某班开展教学调查.采用简单随机抽样的办法,从该班抽取20名学生,根据他们对语文、数学教师教学的满意度评分(百分制),绘制茎叶图如图.设该班学生对语文、数学教师教学的满意度评分的中位数分别为
,则( )



A.![]() | B.![]() | C.![]() | D.无法确定 |