- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- + 茎叶图
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- 观察茎叶图比较数据的特征
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为探索课堂教学改革,江门某中学数学老师用传统教学和“导学案”两种教学方式,在甲、乙两个平行班进行教学实验。为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图。记成绩不低于70分者为“成绩优良”。

(Ⅰ)请大致判断哪种教学方式的教学效果更佳,并说明理由;
(Ⅱ)构造一个教学方式与成绩优良列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
(附:,其中
是样本容量)
独立性检验临界值表:

图2-1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到12次的考试成绩依次记为A1,A2,…,A12.图2-2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是 _______.

如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则
的值为( )



A.7 | B.8 | C.6 | D.9 |
如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩,已知甲组数据的平均数为18,乙组数据的平均数为16,则
的值分别为( )



A.8,4 | B.8,5 | C.5,8 | D.8,8 |
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录了有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以
表示.
(
)若甲、乙两个小组的数学平均成绩相同,则
__________.
(
)乙组平均成绩超过甲组平均成绩的概率为__________.

(


(


若6名男生和9名女生身高(单位:
)的茎叶图如图,则男生的平均身高与女生身高的中位数分别为( )



A.181 166 | B.181 168 |
C.180 166 | D.180 168 |
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取
次.记录如下:
甲:
,
,
,
,
,
,
,
乙:
,
,
,
,
,
,
,
(
)用茎叶图表示这两组数据.
(
)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为派哪位学生参加合适?请说明理由.
(
)若将频率视为概率,对甲同学在今后的三次数学竞赛成绩进行预测,记这
次成绩中高于
分的次数为
,求
的分布列及数学期望.

甲:








乙:








(

(

(





公交车的数量太多容易造成资源浪费,太少又难以满足乘客的需求,为了合理布置车辆,公交公司在2路车的乘客中随机调查了50名乘客,经整理,他们候车时间(单位:
)的茎叶图如下:

(Ⅰ)将候车时间分为
八组,作出相应的频率分布直方图;

(Ⅱ)若公交公司将2路车发车时间调整为每隔15
发一趟车,那么上述样本点将发生变化(例如候车时间为9
的不变,候车时间为17
的变为2
),现从2路车的乘客中任取5人,设其中候车时间不超过10
的乘客人数为
,求
的数学期望.


(Ⅰ)将候车时间分为


(Ⅱ)若公交公司将2路车发车时间调整为每隔15







如图1是某学习小组学生在某次数学考试中成绩的茎叶图,1号到20号同学的成绩依次为
,图2是统计茎叶图中成绩在一定范围内的学生人数的程序框图,那么该框图的输出结果是( )



A.8 | B.9 | C.11 | D.12 |
(文)(2017·开封二模)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.
(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率.
(2)检验结束后,甲、乙两名运动员的成绩用茎叶图表示如图:
计算说明哪位运动员的成绩更稳定.