- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- + 茎叶图
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- 观察茎叶图比较数据的特征
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某品牌空调在元旦期间举行促销活动,下面的茎叶图表示某专卖店记录的每天销售量情况(单位:台),则销售量的中位数是__________.

将甲、乙两名篮球运动员在五场比赛中所得的分数的数据绘制成茎叶图,如图所示,分别计算在这五场比赛中甲、乙得分的平均数与方差,并据此判断谁的平均水平更好,谁的稳定性更好? 

如图所示的茎叶图,记录了某次歌曲大赛上七位评委为甲选手打出的分数,若去掉一个最高分和一个最低分,则所剩数据的众数和中位数分别为( )


A.83,84 | B.83,85 | C.84,83 | D.84,84 |
某校连续12天对同学们的着装进行检查,着装不合格的人数用茎叶图表示,如图,则该组数据的中位数、众数、极差分别是( )


A.24,33,27 | B.27,35,28 | C.27,35,27 | D.30,35,28 |
为了调查观众对某热播电视剧的喜爱程度,某电视台在甲、乙两地各随机抽取了8名观众作问卷调查,得分统计结果如图所示:

(1)计算甲、乙两地被抽取的观众问卷的平均得分;
(2)计算甲、乙两地被抽取的观众问卷得分的方差;
(3)若从甲地被抽取的8名观众中再邀请2名进行深入调研,求这2名观众中恰有1人的问卷调查成绩在90分以上的概率.

(1)计算甲、乙两地被抽取的观众问卷的平均得分;
(2)计算甲、乙两地被抽取的观众问卷得分的方差;
(3)若从甲地被抽取的8名观众中再邀请2名进行深入调研,求这2名观众中恰有1人的问卷调查成绩在90分以上的概率.
如图所示的茎叶图记录了甲、乙两个学习小组各5名同学在某次考试中的数学成绩,若这两组数据的中位数相等,且平均值也相同,则
和
的值分别为 ( )




A.3,2 | B.2,3 | C.2,4 | D.3,4 |
某赛季甲、乙两名篮球运动员每场比赛得分如茎叶图所示,则下列说法中正确的是( )

①甲比乙发挥更稳定
②乙比甲发挥更稳定
③乙的得分值的中位数是36
④甲、乙得分值的分布都呈“单峰”状态

①甲比乙发挥更稳定
②乙比甲发挥更稳定
③乙的得分值的中位数是36
④甲、乙得分值的分布都呈“单峰”状态
A.①③ | B.②③ | C.①② | D.②③④ |
质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.

(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;
(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;
(3)若从甲、乙两车间12个零件中随机抽取2个零件,用
表示乙车间的零件个数,求
的分布列与数学期望.

(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;
(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;
(3)若从甲、乙两车间12个零件中随机抽取2个零件,用






A.甲大于乙 | B.乙大于甲 | C.甲、乙相等 | D.无法确定 |
甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字,若甲、乙两人的平均成绩分别是
,则下列说法正确的是



A.![]() | B.![]() |
C.![]() | D. ![]() |