- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- + 茎叶图
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- 观察茎叶图比较数据的特征
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校高一年级研究性学习小组,调查了学校超市甲、乙两种签字笔连续5天的日销售量(单位:件),得到如图所示的茎叶图,则甲、乙两种签字笔中日销售量较为稳定的是( )


A.甲 | B.乙 | C.一样稳定 | D.无法比较 |
2017年5月,印度电影《摔跤吧!爸爸》在中国上映,为了了解银川观众的满意度,某影院随机调查了本市观看影片的观众,现从调查人群中随机抽取13名,并用如图所示的茎叶图记录了他们的满意度分数(10分制,且以小数点前的一位数字为茎,小数点后的一位数字为叶)。若分数不低于9分,则称该观众为“满意观众”.

(1)这13个分数的中位数和众数分别是多少?
(2)从本次所记录的满意度评分大于
的“满意观众”中随机抽取2人,求这2人得分不同的概率.

(1)这13个分数的中位数和众数分别是多少?
(2)从本次所记录的满意度评分大于

某高校学生社团为了解“大数据时代”下大学生就业情况的满意度,对20名学生进行问卷计分调查,得到如图所示的茎叶图:

(1)计算男生打分的平均分,观察茎叶图,评价男女生打分的分散程度;
(2)从打分在80分以上的同学随机抽3人,求被抽到的女生人数
的分布列和数学期望.

(1)计算男生打分的平均分,观察茎叶图,评价男女生打分的分散程度;
(2)从打分在80分以上的同学随机抽3人,求被抽到的女生人数

甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人6次测试的成绩(单位:分)记录如下:
甲 86 77 92 72 78 84
乙 78 82 88 82 95 90
(1)用茎叶图表示这两组数据,现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(2)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于85分的次数为
,求
的分布列和数学期望
及方差
.
甲 86 77 92 72 78 84
乙 78 82 88 82 95 90
(1)用茎叶图表示这两组数据,现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(2)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于85分的次数为




学校为了了解
、
两个班级学生在本学期前两个月内观看电视节目的时长,分别从这两个班级中随机抽取10名学生进行调查,得到他们观看电视节目的时长分别为(单位:小时):
班:5、5、7、8、9、11、14、20、22、31;
班:3、9、11、12、21、25、26、30、31、35.
将上述数据作为样本.
(Ⅰ)绘制茎叶图,并从所绘制的茎叶图中提取样本数据信息(至少写出2条);
(Ⅱ)分别求样本中
、
两个班级学生的平均观看时长,并估计哪个班级的学生平均观看的时间较长;
(Ⅲ)从
班的样本数据中随机抽取一个不超过11的数据记为
,从
班的样本数据中随机抽取一个不超过11的数据记为
,求
的概率.




将上述数据作为样本.
(Ⅰ)绘制茎叶图,并从所绘制的茎叶图中提取样本数据信息(至少写出2条);
(Ⅱ)分别求样本中


(Ⅲ)从





某班20名同学某次数学测试的成绩可绘制成如图茎叶图.由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.

(1)完成频率分布直方图;
(2)根据(1)中的频率分布直方图估计全班同学的平均成绩
(同一组中的数据用改组区间的中点值作代表);
(3)根据茎叶图计算出的全班的平均成绩为
,并假设
,且
取得每一个可能值的机会相等,在(2)的条件下,求概率
.


(1)完成频率分布直方图;
(2)根据(1)中的频率分布直方图估计全班同学的平均成绩

(3)根据茎叶图计算出的全班的平均成绩为




某中学高一年级从甲、乙两个班各选出7名学生参加国防知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则
的值为( )



A.8 | B.168 | C.9 | D.169 |
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某市环保局从市区2017年全年每天的PM2.5监测数据中,随机抽取15天的数据作为标本,监测值如茎图所示(十位为茎,个位为叶).

(1)从这15天的数据中任取一天,求这天空气质量达到一级的概率;
(2)从这15天的数据中任取3天的数据,记
表示其中空气质量达到一级的天数,求
的分布列;
(3)以这15天的PM2.5的日均值来估计一年的空气质量情况(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.
某市环保局从市区2017年全年每天的PM2.5监测数据中,随机抽取15天的数据作为标本,监测值如茎图所示(十位为茎,个位为叶).

(1)从这15天的数据中任取一天,求这天空气质量达到一级的概率;
(2)从这15天的数据中任取3天的数据,记


(3)以这15天的PM2.5的日均值来估计一年的空气质量情况(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.
在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图所示:
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为______人.
13 | 0 | 0 | 3 | 4 | 5 | 6 | 6 | 8 | 8 | 8 | 9 | | | | | | |
14 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 7 | 8 |
15 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | | | | | | | | | | |
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为______人.