- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- + 茎叶图
- 茎叶图的优缺点与适用对象
- 绘制茎叶图
- 补全茎叶图中的数据
- 观察茎叶图比较数据的特征
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为
、
,比较
、
的大小(直接写出结果,不写过程);
(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;
(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.
(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为




(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;
(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.

(Ⅰ)某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.设甲、乙两个班所抽取的10名同学成绩方差分别为
、
,比较
、
的大小(直接写结果,不必写过程);

(Ⅱ)设集合
,
,命题p:x∈A;命题q:x∈B,若p是q的必要条件,求实数m的取值范围.





(Ⅱ)设集合


某超市连锁店统计了城市甲、乙的各
台自动售货机在中午
至
间的销售金额,并用茎叶图表示如图.则有( )





A.甲城销售额![]() | B.甲城销售额多,乙城稳定 |
C.乙城销售额多,甲城稳定 | D.乙城销售额多,甲城不够稳定 |
某赛季甲、乙两名篮球运动员每场比赛得分情况如下表:
(1)绘制两人得分的茎叶图;
(2)分析并比较甲、乙两人七场比赛的平均得分及得分的稳定程度.
| 第一场 | 第二场 | 第三场 | 第四场 | 第五场 | 第六场 | 第七场 |
甲 | 26 | 28 | 24 | 22 | 31 | 29 | 36 |
乙 | 26 | 29 | 33 | 26 | 40 | 29 | 27 |
(1)绘制两人得分的茎叶图;
(2)分析并比较甲、乙两人七场比赛的平均得分及得分的稳定程度.
某大学为调查来自南方和北方的同龄大学生的身高差异,从2011级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下:(单位:cm)
南方:158,170,166,169,180,175,171,176,162,163;
北方:183,173,169,163,179,171,157,175,178,166;
(Ⅰ)根据抽测结果,画出茎叶图,并根据你画的茎叶图,对来自南方和北方的大学生的身高作比较,写出两个统计结论;
(Ⅱ)若将样本频率视为总体的概率,现从来自南方的身高不低于170的大学生中随机抽取3名同学,求其中恰有两名同学的身高低于175的概率.
南方:158,170,166,169,180,175,171,176,162,163;
北方:183,173,169,163,179,171,157,175,178,166;
(Ⅰ)根据抽测结果,画出茎叶图,并根据你画的茎叶图,对来自南方和北方的大学生的身高作比较,写出两个统计结论;
(Ⅱ)若将样本频率视为总体的概率,现从来自南方的身高不低于170的大学生中随机抽取3名同学,求其中恰有两名同学的身高低于175的概率.
某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 | 11.6 | 12.2 | 13.2 | 13.9 | 14.0 | 11.5 | 13.1 | 14.5 | 11.7 | 14.3 |
乙 | 12.3 | 13.3 | 14.3 | 11.7 | 12.0 | 12.8 | 13.2 | 13.8 | 14.1 | 12.5 |
(I)请作出样本数据的茎叶图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).
(Ⅱ)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率.
(Ⅲ)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]
之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.
下面的茎叶图表示的是某城市一台自动售货机的销售额情况(单位:元),图中的数字
表示的意义是这台自动售货机的销售额为()

A.![]() | B.![]() | C.![]() | D.![]() ![]() |
在如图所示的茎叶图中,乙组数据的中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是 组.

从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:
甲品种:271 273 280 285 285 287 292 294 295
301 303 303 307 308 310 314 319 323
325 325 328 331 334 337 352
乙品种:284 292 295 304 306 307 312 313 315
315 316 318 318 320 322 322 324 327
329 331 333 336 337 343 356
由以上数据设计了如下茎叶图:

根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:
① ;
② .
甲品种:271 273 280 285 285 287 292 294 295
301 303 303 307 308 310 314 319 323
325 325 328 331 334 337 352
乙品种:284 292 295 304 306 307 312 313 315
315 316 318 318 320 322 322 324 327
329 331 333 336 337 343 356
由以上数据设计了如下茎叶图:

根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:
① ;
② .