在某次数学测验后,将参加考试的名学生的数学成绩制成频率分布直方图(如图),则在该次测验中成绩不低于分的学生数是( )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议.为调查该校学生每周平均体育运动时间的情况,从高一高二基础年级与高三三个年级学生中按照的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图.

(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间不足4小时的人数;
(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间是否“优秀”与年级有关.”
 
基础年级
高三
合计
优秀
 
 
 
非优秀
 
 
 
合计
 
 
300
 
附:.
参考数据:

0.100
0.050
0.010
0.005

2.706
3.841
6.635
7.879
 
当前题号:2 | 题型:解答题 | 难度:0.99
某企业为检测一条流水线的生产情况,随机抽取100件产品进行称重(单位:),分组区间如下:第1组,第2组,第3组,第4组,第5组.整理数据得到如图所示的频率分布直方图.

(1)分别求第3,4,5组的频率;
(2)若该企业决定在第3,4,5组中用分层抽样的方法抽取6件产品进入第二环节的检测,试问第3,4,5组应各抽取多少件产品?
(3)根据直方图估计这100件产品的重量平均值(同一组中的数据用该组区间的中间值作代表)
当前题号:3 | 题型:解答题 | 难度:0.99
港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为(  )
A.300,B.300,C.60,D.60,
当前题号:4 | 题型:单选题 | 难度:0.99
我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如下图表:

(1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)政府计划为80岁及以上长者或生活不能自理的老人每人购买1000元/年的医疗保险,为其余老人每人购买600元/年的医疗保险,不可重复享受,试估计政府执行此计划的年度预算.
当前题号:5 | 题型:解答题 | 难度:0.99
近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

附注:①对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为
②参考数据:
(Ⅰ)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;
(Ⅱ)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):






5.5
8.7
1.9
301.4
79.75
385
 
①根据回归方程类型及表中数据,建立关于的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
当前题号:6 | 题型:解答题 | 难度:0.99
某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场由5名专家组成评委给每位参赛选手评分,场外观众也可以通过网络给每位参赛选手评分.每位选手的最终得分需要综合考虑专家评分和观众评分.某选手参与比赛后,现场专家评分情况如下表.另有约数万名场外观众参与评分,将观众评分按照分组,绘成频率分布直方图如下图.


(Ⅰ)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(Ⅱ)从现场专家中随机抽取2人,求其中评分高于9分的至少有1人的概率;
(Ⅲ)考虑以下两种方案来确定该选手的最终得分.
方案一:计算所有专家与观众评分的平均数作为该选手的最终得分;
方案二:分别计算专家评分的平均数和观众评分的平均数,用作为该选手最终得分.
请直接写出的大小关系.
当前题号:7 | 题型:解答题 | 难度:0.99
某市为调查统计高中男生身高情况,现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成6组:第1组,第2组,…,第6组,如图是按上述分组方法得到的频率分布直方图.

(1)由频率分布直方图估计该校高三年级男生平均身高状况;
(2)求这50名男生身高在以上(含)的人数.
当前题号:8 | 题型:解答题 | 难度:0.99
为了解某团战士的体重情况,采用随机抽样的方法.将样本体重数据整理后,画出了如图所示的频率分布直方图.已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,则全团共抽取人数为_______.

当前题号:9 | 题型:填空题 | 难度:0.99
学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在的同学有人,则的值为(  )
A.B.C.D.
当前题号:10 | 题型:单选题 | 难度:0.99