- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在某次数学测验后,将参加考试的
名学生的数学成绩制成频率分布直方图(如图),则在该次测验中成绩不低于
分的学生数是( )




A.![]() | B.![]() | C.![]() | D.![]() |
为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议.为调查该校学生每周平均体育运动时间的情况,从高一高二基础年级与高三三个年级学生中按照
的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图.

(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间不足4小时的人数;
(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列
列联表,并判断是否有
的把握认为“该校学生的每周平均体育运动时间是否“优秀”与年级有关.”
附:
.
参考数据:


(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间不足4小时的人数;
(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列


| 基础年级 | 高三 | 合计 |
优秀 | | | |
非优秀 | | | |
合计 | | | 300 |
附:

参考数据:
![]() | 0.100 | 0.050 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
某企业为检测一条流水线的生产情况,随机抽取100件产品进行称重(单位:
),分组区间如下:第1组
,第2组
,第3组
,第4组
,第5组
.整理数据得到如图所示的频率分布直方图.

(1)分别求第3,4,5组的频率;
(2)若该企业决定在第3,4,5组中用分层抽样的方法抽取6件产品进入第二环节的检测,试问第3,4,5组应各抽取多少件产品?
(3)根据直方图估计这100件产品的重量平均值(同一组中的数据用该组区间的中间值作代表)







(1)分别求第3,4,5组的频率;
(2)若该企业决定在第3,4,5组中用分层抽样的方法抽取6件产品进入第二环节的检测,试问第3,4,5组应各抽取多少件产品?
(3)根据直方图估计这100件产品的重量平均值(同一组中的数据用该组区间的中间值作代表)
港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为( )


A.300,![]() | B.300,![]() | C.60,![]() | D.60,![]() |
我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如下图表:

(1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)政府计划为80岁及以上长者或生活不能自理的老人每人购买1000元/年的医疗保险,为其余老人每人购买600元/年的医疗保险,不可重复享受,试估计政府执行此计划的年度预算.

(1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)政府计划为80岁及以上长者或生活不能自理的老人每人购买1000元/年的医疗保险,为其余老人每人购买600元/年的医疗保险,不可重复享受,试估计政府执行此计划的年度预算.
近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

附注:①对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
;
②参考数据:
,
,
,
,
.
(Ⅰ)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在
”为事件
,试估计
的概率;
(Ⅱ)根据该汽车交易市场的历史资料,得到散点图如图2,其中
(单位:年)表示二手车的使用时间,
(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用
作为二手车平均交易价格
关于其使用年限
的回归方程,相关数据如下表(表中
,
):
①根据回归方程类型及表中数据,建立
关于
的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格
的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格
的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.

附注:①对于一组数据






②参考数据:





(Ⅰ)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在



(Ⅱ)根据该汽车交易市场的历史资料,得到散点图如图2,其中







![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根据回归方程类型及表中数据,建立


②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格


某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场由5名专家组成评委给每位参赛选手评分,场外观众也可以通过网络给每位参赛选手评分.每位选手的最终得分需要综合考虑专家评分和观众评分.某选手参与比赛后,现场专家评分情况如下表.另有约数万名场外观众参与评分,将观众评分按照
分组,绘成频率分布直方图如下图.


(Ⅰ)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(Ⅱ)从现场专家中随机抽取2人,求其中评分高于9分的至少有1人的概率;
(Ⅲ)考虑以下两种方案来确定该选手的最终得分.
方案一:计算所有专家与观众评分的平均数
作为该选手的最终得分;
方案二:分别计算专家评分的平均数
和观众评分的平均数
,用
作为该选手最终得分.
请直接写出
与
的大小关系.



(Ⅰ)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(Ⅱ)从现场专家中随机抽取2人,求其中评分高于9分的至少有1人的概率;
(Ⅲ)考虑以下两种方案来确定该选手的最终得分.
方案一:计算所有专家与观众评分的平均数

方案二:分别计算专家评分的平均数



请直接写出


某市为调查统计高中男生身高情况,现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于
和
之间,将测量结果按如下方式分成6组:第1组
,第2组
,…,第6组
,如图是按上述分组方法得到的频率分布直方图.

(1)由频率分布直方图估计该校高三年级男生平均身高状况;
(2)求这50名男生身高在
以上(含
)的人数.






(1)由频率分布直方图估计该校高三年级男生平均身高状况;
(2)求这50名男生身高在


为了解某团战士的体重情况,采用随机抽样的方法.将样本体重数据整理后,画出了如图所示的频率分布直方图.已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,则全团共抽取人数为_______.
学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为
的样本,其频率分布直方图如图所示,其中支出在
的同学有
人,则
的值为( )






A.![]() | B.![]() | C.![]() | D.![]() |