- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
兰天购物广场某营销部门随机抽查了100名市民在2018年国庆长假期间购物广场的消费金额,所得数据如表,已知消费金额不超过3千元与超过3千元的人数比恰为
.

(1)试确定
,
,
,
的值,并补全频率分布直方图(如图);
(2)用分层抽样的方法从消费金额在
、
和
的三个群体中抽取7人进行问卷调查,则各小组应抽取几人?若从这7人中随机选取2人,则此2人来自同一群体的概率是多少?

消费金额(单位:千元) | 人数 | 频率 |
![]() | 8 | 0.08 |
![]() | 12 | 0.12 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | 8 | 0.08 |
![]() | 7 | 0.07 |
合计 | 100 | 1.00 |

(1)试确定




(2)用分层抽样的方法从消费金额在



从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据分成
五组,绘制成频率分布直方图(如图).

(1)求抽取的学生身高在
内的人数;
(2)求抽取的学生身高的平均值(同一组中数据用该组区间中点作代表).



(1)求抽取的学生身高在

(2)求抽取的学生身高的平均值(同一组中数据用该组区间中点作代表).
随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如124表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:
(1)若私家车的数量
与年份编号
满足线性相关关系,求
关于
的线性回归方程,并预测2020年该小区的私家车数量;
(2)小区于2018年底完成了基础设施改造,划设了120个停车位,为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区,由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:
①截至2018年已登记在册的私家车业主拥有竞拍资格;
②每车至多申请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;
③根据物价部门的规定,竞价不得超过1200元;
④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;
⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本:次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主进行竞拍意向的调查,统计了他们的拟报竞价,得到如下频率分布直方图:

(ⅰ)求所抽取的业主中有意向竞拍报价不低于1000元的人数;
(ⅱ)如果所有符合条件的车主均参与竞拍,利用样木估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)
参考公式:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
编号![]() | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
数量![]() | 34 | 95 | 124 | 181 | 216 |
(1)若私家车的数量




(2)小区于2018年底完成了基础设施改造,划设了120个停车位,为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区,由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:
①截至2018年已登记在册的私家车业主拥有竞拍资格;
②每车至多申请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;
③根据物价部门的规定,竞价不得超过1200元;
④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;
⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本:次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主进行竞拍意向的调查,统计了他们的拟报竞价,得到如下频率分布直方图:

(ⅰ)求所抽取的业主中有意向竞拍报价不低于1000元的人数;
(ⅱ)如果所有符合条件的车主均参与竞拍,利用样木估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)
参考公式:对于一组数据





中央政府为了对应因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

(1)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异:

(2)若从年龄在
,
的被调查人中各随机选取两人进行调查,记选中的4人中支持“延迟退休”人数为
,求随机变量
的分布列及数学期望.
参考数据:

.

(1)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异:

(2)若从年龄在




参考数据:


为了调查居民对城市共享单车的满意度,随机选取了100人进行问卷调查,并将问卷中的100人根据其满意度评分值按照
分为5组,得到号如图所示的频率分布直方图.

(Ⅰ)求满意度分值不低于70分的人数.
(Ⅱ)已知满意度分值在
内的男性与女性的比为3:4,为提高共享单车的满意度,现从满意度分值在
的人中随机抽取2人进行座谈,求这2人中只有一位男性的概率.


(Ⅰ)求满意度分值不低于70分的人数.
(Ⅱ)已知满意度分值在


衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.






(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示, 支持“延迟退休年龄政策”的人数与年龄的统计结果如表:

(I)由以上统计数据填写下面的
列联表;
(II)通过计算判断是否有
的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.
参考公式:

年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() |
支持“延迟退休年龄政策”人数 | 15 | 5 | 15 | 28 | 17 |
(I)由以上统计数据填写下面的

| 年龄低于45岁的人数 | 年龄不低于45岁的人数 | 总计 |
支持 | | | |
不支持 | | | |
总计 | | | |
(II)通过计算判断是否有

![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
参考公式:

某中学有初中学生1800人,高中学生1200人. 为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:
,
,
,
,
,并分别加以统计,得到如图所示的频率分布直方图.


(Ⅰ)写出
的值;试估计该校所有学生中,阅读时间不小于30个小时的学生人数;
(Ⅱ)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率.







(Ⅰ)写出

(Ⅱ)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率.
从某小学随机抽取100名学生,将他们的身高数据(单位:厘米)按
,
,
,
,
分组,绘制成频率分布直方图(如图).从身高在
,
,
三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在
内的学生中选取的人数应为( )











A.3 | B.4 | C.5 | D.6 |
从某校
名学生中随机抽取若干学生,获得了他们一天课外阅读时间(单位:分钟)的数据,整理得到频率分布直方图如下.则估计该校学生中每天阅读时间在
的学生人数为_____.


