- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某高中随机抽取部分高一学生调查其上学路上所需时间频(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是
,样本数据分组为
.

(1)求直方图中
的值;
(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生 1200名请估计新生中有多少名学生可以申请住宿;
(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于 40分钟的人数记为
,求
的分布列和数学期望.(以直方图中的频率作为概率).



(1)求直方图中

(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生 1200名请估计新生中有多少名学生可以申请住宿;
(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于 40分钟的人数记为


下面是追踪调查200个某种电子元件寿命(单位:
)频率分布直方图,如图:

其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )
①寿命在300-400的频数是90;
②寿命在400-500的矩形的面积是0.2;
③用频率分布直方图估计电子元件的平均寿命为:

④寿命超过
的频率为0.3


其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )
①寿命在300-400的频数是90;
②寿命在400-500的矩形的面积是0.2;
③用频率分布直方图估计电子元件的平均寿命为:

④寿命超过

A.① | B.② | C.③ | D.④ |
树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(I)求出
的值;
(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.







(I)求出

(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.
据调查显示,某高校
万男生的身高服从正态分布
,现从该校男生中随机抽取
名进行身高测量,将测量结果分成
组:
,
,
,
,
,
,并绘制成如图所示的频率分布直方图.

(Ⅰ)求这
名男生中身高在
(含
)以上的人数;
(Ⅱ)从这
名男生中身高在
以上(含
)的人中任意抽取
人,该
人中身高排名(从高到低)在全校前
名的人数记为
,求
的数学期望.
(附:参考数据:若
服从正态分布
,则
,
,
.)











(Ⅰ)求这



(Ⅱ)从这








(附:参考数据:若





某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在
.

(1)求居民收入在
的频率;
(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;
(3)为了分析居民的收入与年龄、职业等方面的关系,从这10000人中用分层抽样方法抽出100人作进一步分析,则应月收入为
的人中抽取多少人?


(1)求居民收入在

(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;
(3)为了分析居民的收入与年龄、职业等方面的关系,从这10000人中用分层抽样方法抽出100人作进一步分析,则应月收入为

从高三学生中抽取
名学生参加数学竞赛,成绩(单位:分)的分组及各数据绘制的频率分布直方图如图所示,已知成绩的范围是区间
,且成绩在区间
的学生人数是
人.

(1)求
,
的值;
(2)若从数学成绩(单位:分)在
的学生中随机选取
人进行成绩分析.
①列出所有可能的抽取结果;
②设选取的
人中,成绩都在
内为事件
,求事件
发生的概率.





(1)求


(2)若从数学成绩(单位:分)在


①列出所有可能的抽取结果;
②设选取的




为了解某校学生的视力情况,随机地抽查了该校100名学生的视力情况,得到的频率分布直方图如下图,但不慎将部分数据丢失,仅知道后5组频数之和为70,则视力在4.6到4.7之间的学生数为( )


A.14 | B.16 | C.30 | D.32 |
某高中在今年的期末考试历史成绩中随机抽取
名考生的笔试成绩,作出其频率分布直方图如图所示,已知成绩在
中的学生有1名,若从成绩在
和
两组的所有学生中任取2名进行问卷调查,则2名学生的成绩都在
中的概率为( )







A.![]() | B.![]() | C.![]() | D.![]() |
将容量为
的样本中得数据分成5组,绘制频率分布直方图,若第1至第5个长方形得面积之比为3:3:6:2:1,且最后两组数据的频数之和等于20,则
的值等于__________.

