- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某次月考后,从所有考生中随机抽取50名考生的数学成绩进行统计,并画出频率分布直方图如图所示,则该次考试数学成绩的众数的估计值为


A.70 | B.![]() | C.75 | D.80 |
某市统计局就本地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示月收入在
,(单位:元).

(Ⅰ)估计居民月收入在
的概率;
(Ⅱ)根据频率分布直方图估计样本数据的中位数;


(Ⅰ)估计居民月收入在

(Ⅱ)根据频率分布直方图估计样本数据的中位数;
从某地区随机抽取100名高中男生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).若要从各组内的男生中,用分层抽样的方法选取20人参加一项活动,则从
这一组中抽取的人数为 .


某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的.


(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示
与
之间存在线性相关关系,求
关于
的回归方程;
(Ⅲ)若广告投入
万元时,实际销售收益为
.
万元,求残差
.

附:




(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示




(Ⅲ)若广告投入






某班同学利用国庆节进行社会实践,对
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

(Ⅰ)补全频率分布直方图并求
的值;
(Ⅱ)为调查该地区的年龄与生活习惯是否符合低碳观念有无关系,调查组按40岁以下为青年,40岁以上(含40岁)为老年分成两组,请你先完成下列
维列表,并判断能否有99.9%的把握认定该地区的生活习惯是否符合低碳观念与人的年龄有关?
参考公式:


组数 | 分组 | 低碳族的人数 | 占本组的频率 |
1 | ![]() ![]() | 120 | 0.6 |
2 | ![]() ![]() | 195 | ![]() |
3 | ![]() ![]() | 100 | 0.5 |
4 | ![]() ![]() | ![]() | 0.4 |
5 | ![]() ![]() | 30 | 0.3 |
6 | ![]() ![]() | 15 | 0.3 |

(Ⅰ)补全频率分布直方图并求

(Ⅱ)为调查该地区的年龄与生活习惯是否符合低碳观念有无关系,调查组按40岁以下为青年,40岁以上(含40岁)为老年分成两组,请你先完成下列

年龄组 是否低碳族 | 青年 | 老年 |
低碳族 | | |
非低碳族 | | |
参考公式:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
某班t名学生在2011年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组[120,130],下表是按上述分组方法得到的频率分布表:
(Ⅰ)求t及分布表中x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件 “|m—n|≤10”的概率.
分组 | 频数 | 频率 |
[80,90) | x | 0.04 |
[90,100) | 9 | y |
[100,110) | z | 0.38 |
[110,120) | 17 | 0.34 |
[120,130] | 3 | 0.06 |
(Ⅰ)求t及分布表中x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件 “|m—n|≤10”的概率.
某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:g)数据绘制的频率分布直方图如图所示,已知产品净重的范围是区间[96,106],样本中净重在区间[96,100)的产品个数是24,则样本中净重在区间[98,104)的产品个数是 .

从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组的频数是6,请结合直方图提供的信息,解答下列问题:

(1)样本的容量是多少?
(2)列出频率分布表;
(3)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率;
(4)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.

(1)样本的容量是多少?
(2)列出频率分布表;
(3)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率;
(4)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.
某班
名学生在一次百米测试中,成绩全部介于
秒与
秒之间,将测试结果按如下方式分成五组:第一组
,第二组
,……,第五组
.下图是按上述分组方法得到的频率分布直方图. 若成绩大于或等于
秒且小于
秒认为良好,则该班在这次百米测试中成绩良好的人数为 .








