- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查
人,并将调查情况进行整理后制成下表:
(1)完成被调查人员年龄的频率分布直方图,并求被调査人员中持赞成态度人员的平均年龄约为多少岁?
(2)若从年龄在
的被调查人员中各随机选取
人进行调查.请写出所有的基本亊件,并求选取
人中恰有
人持不赞成态度的概率.

年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() |
赞成人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)完成被调查人员年龄的频率分布直方图,并求被调査人员中持赞成态度人员的平均年龄约为多少岁?
(2)若从年龄在





某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以
(单位:盒,
)表示这个开学季内的市场需求量,
(单位:元)表示这个开学季内经销该产品的利润.

(Ⅰ)根据直方图估计这个开学季内市场需求量
的平均数和众数;
(Ⅱ)将
表示为
的函数;
(Ⅲ)根据频率分布直方图估计利润
不少于1350元的概率.




(Ⅰ)根据直方图估计这个开学季内市场需求量

(Ⅱ)将


(Ⅲ)根据频率分布直方图估计利润

《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市对全市10万名市民进行了汉字听写测试,调查数据显示市民的成绩服从正态分布
.现从某社区居民中随机抽取50名市民进行听写测试,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组
,第二组
,…,第六组
,如图是按上述分组方法得到的频率分布直方图.

(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;
(2)已知第1组市民中男性有3名,组织方要从第1组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性群众的概率.





(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;
(2)已知第1组市民中男性有3名,组织方要从第1组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性群众的概率.
全世界人们越来越关注环境保护问题,某监测站点于2016年8月某日起连续
天监测空气质量指数(
),数据统计如下:

(1)根据所给统计表和频率分布直方图中的信息求出
的值,并完成频率分布直方图;

(2)由频率分布直方图求该组数据的平均数与中位数;
(3)在空气质量指数分别属于
和
的监测数据中,用分层抽样的方法抽取5天,再从中任意选取2天,求事件
“两天空气都为良”发生的概率.



(1)根据所给统计表和频率分布直方图中的信息求出


(2)由频率分布直方图求该组数据的平均数与中位数;
(3)在空气质量指数分别属于



为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为
)进行统计.按照
,
,
,
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
,
的数据).

(Ⅰ)求样本容量
和频率分布直方图中的
,
的值;
(Ⅱ)分数在
的学生设为一等奖,获奖学金500元;分数在
的学生设为二等奖,获奖学金200元.已知在样本中,获一、二等奖的学生中各有一名男生,则从剩下的女生中任取三人,求奖学金之和大于600的概率.










(Ⅰ)求样本容量



(Ⅱ)分数在


某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了
人,得到如下的统计表和频率分布直方图.

(1)写出其中
及
和
的值;
(2)若从第1,2,3,组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求抽取的2人年龄都在
的概率.


(1)写出其中



(2)若从第1,2,3,组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求抽取的2人年龄都在

河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家里躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》.自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求:“幼儿园、中小学等教育机构停课,停课不停学”,学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的.某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:
(1)请补全被调查人员年龄的频率分布直方图;

(2)若从年龄在
的被调查者中分别随机选取一人进行追踪调查,求这两人都赞成“停课”这一举措的概率.
年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(1)请补全被调查人员年龄的频率分布直方图;

(2)若从年龄在

某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:

(Ⅰ)求频率分布表中
,
的值,并补全频率分布直方图;
(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在
内的人数
,求
的分布列及数学期望.

(Ⅰ)求频率分布表中


(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在



某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以
为组距分成
组:
,
,
,
,
,
,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:

(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在
范围内的人中随机选出2人,求2人中恰有1人评分在
范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
整理评分数据,将分数以








B餐厅分数频数分布表 | |
分数区间 | 频数 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |

(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在


(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.