- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某食品厂为了检查甲乙两条自动包装流水线的生产情况,在这两条流水线上各抽取40件产品作为样本称出品厂为了检查甲、乙两条自动包装流水线的生产情况,在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品,表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.

(1)若检验员不小心将甲、乙两条流水线生产的重量值在
的产品放在了一起,然后又随机取出3件产品,求至少有一件是乙流水线生产的产品的概率;
(2)由以上统计数据完成下面
列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.

(1)若检验员不小心将甲、乙两条流水线生产的重量值在

(2)由以上统计数据完成下面

| 甲流水线 | 乙流水线 | 合计 |
合格品 | ![]() | ![]() | |
不合格品 | ![]() | ![]() | |
合计 | | | ![]() |
某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.

( I ) 求这次铅球测试成绩合格的人数;
(II)用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记
表示两人中成绩不合格的人数,求
的数学期望和方差.

( I ) 求这次铅球测试成绩合格的人数;
(II)用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记


某地教育部门为了调查学生在数学答卷中的有关信息,从上次考试的10000名考生的数学试卷中用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图),则10000人的数学成绩在[140,150]段的约是________人.

某超市从2000年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:

(1)写出频率分布直方图中
的值,并做出甲种酸奶日销售量的频率分布直方图;
(2)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为
.试比较
和
的大小
(3)假设同一组中的每个数据可用该组区间的中间值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量

(1)写出频率分布直方图中

(2)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为



(3)假设同一组中的每个数据可用该组区间的中间值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,
,
,
后画出如下图的频率分布直方图,观察图形,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的合格率(60分及60分以上为合格);
(3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率.




(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的合格率(60分及60分以上为合格);
(3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率.
为了解学生答卷情况,某市教育部门在高三某次测试后抽取了n 名同学的第Ⅱ卷进行调查,并根据所得数据画出了样本的频率分布直方图(如图),已知从左到右第一小组的频数是50,则n=______.

某校从参加高一年级期中考试的学生中随机抽取
名学生,将其数学成绩(均为整数)分成六段
后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求分数在
内的频率,并补全这个频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)根据频率分布直方图估计这次高一年级期中考试的学生成绩的中位数(保留整数).



(1)求分数在

(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)根据频率分布直方图估计这次高一年级期中考试的学生成绩的中位数(保留整数).
为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.

(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一的学生达标的概率
(3)为了分析学生的体能与身高,体重等方面的关系,必须再从样本中按分层抽样方法抽出50人作进一步分析,则体能在[120,130)的这段应抽多少人?

(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一的学生达标的概率
(3)为了分析学生的体能与身高,体重等方面的关系,必须再从样本中按分层抽样方法抽出50人作进一步分析,则体能在[120,130)的这段应抽多少人?