- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校高二年级的
名学生参加一次科普知识竞赛,然后随机抽取
名学生的成绩进行统计分析.

(1)完成频率分布表;
(2)根据上述数据画出频率分布直方图;
(3)估计这次竞赛成绩在80分以上的学生人数是多少?
(4)估计这次竞赛中成绩的平均分是多少?



(1)完成频率分布表;
(2)根据上述数据画出频率分布直方图;
(3)估计这次竞赛成绩在80分以上的学生人数是多少?
(4)估计这次竞赛中成绩的平均分是多少?
我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,为此市政府首先采用抽样调查的方法获得了n位居民某年的月均用水量(单位:吨).根据所得的n个数据按照区间[0,0.5),[0.5,1),[1,1.5),[1.5,2),[2,2.5),[2.5,3),[3,3.5),[3.5,4),[4,4.5]进行分组,得到频率分布直方图如图
(1)若已知n位居民中月均用水量小于1吨的人数是12,求n位居民中月均用水量分别在区间[2,2.5)和[2.5,3)内的人数;
(2)在该市居民中随意抽取10位,求至少有2位居民月均用水量在区间[2,2.5)或[2.5,3)内的概率.(精确到0.01.参考数据:0.619≈0.012,0.6110≈0.0071)
(1)若已知n位居民中月均用水量小于1吨的人数是12,求n位居民中月均用水量分别在区间[2,2.5)和[2.5,3)内的人数;
(2)在该市居民中随意抽取10位,求至少有2位居民月均用水量在区间[2,2.5)或[2.5,3)内的概率.(精确到0.01.参考数据:0.619≈0.012,0.6110≈0.0071)

上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅油画组合而成的世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如下表所示.

(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,
再根据频率分布直方图估计这507名画师中年龄在
岁的人数(结果取整数);
(2)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深
圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为
,求
的分布列及数学期望.
分 组 (单位:岁) | 频数 | 频 率 |
![]() | 5 | 0.050 |
![]() | ① | 0.200 |
![]() | 35 | ② |
![]() | 30 | 0.300 |
![]() | 10 | 0.100 |
合 计 | 100 | 1.00 |

(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,
再根据频率分布直方图估计这507名画师中年龄在

(2)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深
圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为


某超市从某年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:

(1)写出频率分布直方图中
的值,并做出甲种酸奶日销售量的频率分布直方图;
(2)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为
.试比较
和
的大小
(3)假设同一组中的每个数据可用该组区间的中间值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量

(1)写出频率分布直方图中

(2)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为



(3)假设同一组中的每个数据可用该组区间的中间值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量
在检查产品尺寸过程中,将其尺寸分成若干组,[a,b)是其中一组,检查出的个体在该组上的频率为
,该组的直方图的高为
,则|a﹣b|= .


某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……,(510,515],由此得到样本的频率分布直方图,如图4所示.
(Ⅰ)根据频率分布直方图,求重量超过500克的产品数量;
(Ⅱ)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列及数学期望.
(Ⅰ)根据频率分布直方图,求重量超过500克的产品数量;
(Ⅱ)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列及数学期望.

根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80mg/100ml(不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2010年8月15日至8月22日,全国查处酒后驾车和醉酒驾车共28000人,下图是对这28000人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为 人.

图1是某工厂2009年9月份10个车间产量统计条形图,条形图从左到右表示各车间的产量依次记为A1,A2…,A10(如A3表示3号车间的产量为950件).图2是统计图1中产量在一定范围内车间个数的一个算法流程图.那么运行该算法流程后输出的结果是____________ .

某学校为了解该校600名男生的百米成绩(单位:s),随机选择了50名学生进行调查,
下图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这600名学生中成绩在
(单位:s)内的人数大约是 .
下图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这600名学生中成绩在


为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情
况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2000名高中男生中体重大于70公斤的人数大约为_______ .
况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2000名高中男生中体重大于70公斤的人数大约为
