- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成
,
,
,
,
,
六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:

(1)求分数
内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试成绩的中位数;
(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.







(1)求分数

(2)从频率分布直方图中,估计本次考试成绩的中位数;
(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照
,
,
,
,
分成5组,制成如图所示频率分直方图.

(1)求图中
的值及这组数据的众数;
(2)已知满意度评分值在
内的男生数与女生数的比为
,若在满意度评分值为
的人中随机抽取2人进行座谈,求2人均为男生的概率.






(1)求图中

(2)已知满意度评分值在



某地区有800名学员参加交通法规考试,考试成绩的频率分布直方图如图所示,其中成绩分组区间是:
,
,
,
,
,规定90分及以上为合格:

(1)求图中a的值;
(2)根据频率分布直方图估计该地区学员交通法规考试合格的概率;
(3)若三个人参加交通法规考试,估计这三个人至少有两人合格的概率.






(1)求图中a的值;
(2)根据频率分布直方图估计该地区学员交通法规考试合格的概率;
(3)若三个人参加交通法规考试,估计这三个人至少有两人合格的概率.
某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.
(1)求
的值;
(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列
列联表,并判断是否有
的把握认为消费金额与性别有关?
(3)分析人员对抽取对象每周的消费金额
与年龄
进一步分析,发现他们线性相关,得到回归方程
.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)
列联表
临界值表:
,其中

(1)求

(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列


(3)分析人员对抽取对象每周的消费金额




| 男性 | 女性 | 合计 |
消费金额![]() | | | |
消费金额![]() | | | |
合计 | | | |
临界值表:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |


某市在开展创建“全国文明城市”活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文”过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(1)求出a的值;
(2)若已从年龄较小的第1,2组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到
人,求随机变量
的分布列及数学期望
.






(1)求出a的值;
(2)若已从年龄较小的第1,2组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到



某学校为了解本校文、理科学生的学业水平模拟测试数学成绩情况,分别从理科班学生中随机抽取
人的成绩得到样本甲,从文科班学生中随机抽取
人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:

甲样本数据直方图

乙样本数据直方图
已知乙样本中数据在
的有
个.
(1)求
和乙样本直方图中
的值;
(2)试估计该校理科班学生本次模拟测试数学成绩的平均值和文科班学生本次模拟测试数学成绩的中位数(同一组中的数据用该组区间中点值为代表).



甲样本数据直方图

乙样本数据直方图
已知乙样本中数据在


(1)求


(2)试估计该校理科班学生本次模拟测试数学成绩的平均值和文科班学生本次模拟测试数学成绩的中位数(同一组中的数据用该组区间中点值为代表).
某校从参加某次知识竞赛测试得学生中随机抽取60名学生,将其成绩(百分制均为整数)分成6段
,
,…,
后得到如下部分频率直方分布图,观察图形得信息,回答下列问题:

(1)求分数在
内的频率;
(2)若用样本估计总体,已知该校参加知识竞赛一共有300人,请估计本次考试成绩不低于80分的人数;
(3)统计方法中,同一组数据常用该组区间中点值作为代表,据此估计本次考试的平均分.




(1)求分数在

(2)若用样本估计总体,已知该校参加知识竞赛一共有300人,请估计本次考试成绩不低于80分的人数;
(3)统计方法中,同一组数据常用该组区间中点值作为代表,据此估计本次考试的平均分.
2017年5月,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.乘坐高铁可以网络购票,为了研究网络购票人群的年龄分布情况,在5月31日重庆到成都高铁9600名网络购票的乘客中随机抽取了120人进行了统计并记录,按年龄段将数据分成6组:
,得到如下直方图:

(1)试通过直方图,估计5月31日当天网络购票的9600名乘客年龄的中位数;
(2)若在调查的且年龄在
段乘客中随机抽取两人,求两人均来自同一年龄段的概率.


(1)试通过直方图,估计5月31日当天网络购票的9600名乘客年龄的中位数;
(2)若在调查的且年龄在

某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照
分成5组,制成如图所示频率分直方图.

(1)求图中x的值;
(2)求这组数据的平均数和中位数;
(3)已知满意度评分值在
内的男生数与女生数3:2,若在满意度评分值为
的人中随机抽取2人进行座谈,求2人均为男生的概率.


(1)求图中x的值;
(2)求这组数据的平均数和中位数;
(3)已知满意度评分值在

