某学校研究性学习小组对该校高三学生的视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如下直方图:

年级名次/是否近视
1-50
951-1000
近视
41
32
不近视
9
18
 
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数; 
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如上述表格中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系;
(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
附:

0.10
0.05
0.025
0.010
0.005
k
2.706
3.841
5.024
6.635
7.879
 
当前题号:1 | 题型:解答题 | 难度:0.99
市面上有某品牌型和型两种节能灯,假定型节能灯使用寿命都超过5000小时,经销商对型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:

某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,型20瓦和型55瓦的两种节能灯照明效果相当,都适合安装.已知型和型节能灯每支的价格分别为120元、25元,当地商业电价为0.75元/千瓦时.假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换.(用频率估计概率)
(Ⅰ)根据频率直方图估算型节能灯的平均使用寿命;
(Ⅱ)根据统计知识知,若一支灯管一年内需要更换的概率为,那么支灯管估计需要更换支.若该商家新店面全部安装了型节能灯,试估计一年内需更换的支数;
(Ⅲ)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.
当前题号:2 | 题型:解答题 | 难度:0.99
为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有人,第三组中没有疗效的有人,则第三组中有疗效的人数为(    )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
从某市主办的科技知识竞赛的学生成绩中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组,第一组;第二组;…;第六组,并据此绘制了如图所示的频率分布直方图.

(1)求成绩在区间内的学生人数;
(2)从成绩大于等于80分的学生中随机选取2名,求至少有1名学生的成绩在区间内的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)、平均分、众数和中位数. 
当前题号:5 | 题型:解答题 | 难度:0.99
为了应对日益严重的交通压力和空气质量问题,某城市准备出台新的交通限行政策,为了了解市民对“汽车限行”的态度,在当地市民中随机选取100人进行调查,调查情况如表:
年龄段
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
调查人数
5
15
20
n
20
10
赞成人数
3
12
17
18
16
2
 
(Ⅰ)求出表格中n的值,并完成参与调查的市民年龄的频率分布直方图;
(Ⅱ)从这100人中任选1人,若这个人赞成汽车限行,求其年龄在[35,45)的概率;
(Ⅲ)若从年龄在[45,55)的参与调查的市民中按照是否赞成汽车限行进行分层抽样,从中抽取10人参与某项调查,然后再从这10人中随机抽取3人参加座谈会,记这3人中赞成汽车限行的人数为随机变量X,求X的分布列及数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
下面给出四种说法:
①设分别表示数据的平均数、中位数、众数,则
②在线性回归模型中,相关指数表示解释变量对于预报变量变化的贡献率,越接近于,表示回归的效果越好;
③绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
④设随机变量服从正态分布,则
其中不正确的是(   ).
A.①B.②C.③D.④
当前题号:7 | 题型:单选题 | 难度:0.99
某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按分组,制成频率分布直方图:

假设乘客乘车等待时间相互独立.
(1)在上班高峰时段,从甲站的乘客中随机抽取1人,记为;从乙站的乘客中随机抽取1人,记为.用频率估计概率,求“乘客,乘车等待时间都小于20分钟”的概率;
(2)从上班高峰时段,从乙站乘车的乘客中随机抽取3人,表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量的分布列与数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
当前题号:9 | 题型:解答题 | 难度:0.99
2018年的政府工作报告强调,要树立绿水青山就是金山银山理念,以前所未有的决心和力度加强生态环境保护.某地科技园积极检查督导园区内企业的环保落实情况,并计划采取激励措施引导企业主动落实环保措施,下图给出的是甲、乙两企业2012年至2017年在环保方面投入金额(单位:万元)的柱状图.

(Ⅰ)分别求出甲、乙两企业这六年在环保方面投入金额的平均数;(结果保留整数)
(Ⅱ)园区管委会为尽快落实环保措施,计划对企业进行一定的奖励,提出了如下方案:若企业一年的环保投入金额不超过200万元,则该年不奖励;若企业一年的环保投入金额超过200万元,不超过300万元,则该年奖励20万元;若企业一年的环保投入金额超过300万元,则该年奖励50万元.
(ⅰ)分别求出甲、乙两企业这六年获得的奖励之和;
(ⅱ)现从甲企业这六年中任取两年对其环保情况作进一步调查,求这两年获得的奖励之和不低于70万元的概率.
当前题号:10 | 题型:解答题 | 难度:0.99