- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准
(吨),一位居民的月用水量不超过
的部分按平价收费,超出
的部分按议价收费。为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照
,
…,
分成9组,制成了如图所示的频率分布直方图。

(1)求直方图中
的值;
(2)设该市有60万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(3)若该市政府希望使82%的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由。







(1)求直方图中

(2)设该市有60万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(3)若该市政府希望使82%的居民每月的用水量不超过标准


某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以x(单位:盒,
)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.

(1)根据直方图估计这个开学季内市场需求量x的平均数和众数;
(2)将y表示为x的函数;
(3)根据频率分布直方图估计利润y不少于1050元的概率.


(1)根据直方图估计这个开学季内市场需求量x的平均数和众数;
(2)将y表示为x的函数;
(3)根据频率分布直方图估计利润y不少于1050元的概率.
某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为了研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:
,
,
,
,
,分别加以统计,得到如图所示的频率分布直方图.

(1)根据“25周岁以上组”的频率分布直方图,求25周岁以上组工人日平均生产件数的中位数的估计值(四舍五入保留整数);
(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至多抽到一名“25周岁以下组”工人的概率。






(1)根据“25周岁以上组”的频率分布直方图,求25周岁以上组工人日平均生产件数的中位数的估计值(四舍五入保留整数);
(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至多抽到一名“25周岁以下组”工人的概率。
某物流公司每天从甲地运货物到乙地,统计最近的200次可配送的货物量,可得可配送的货物量的频率分布直方图,所图所示,回答以下问题(直方图中每个小组取中间值作为该组数据的替代值).

(1)求该物流公司每天从甲地到乙地平均可配送的货物量;
(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每趟最多只能装载40件货物,满载发车,否则不发车.若发车,则每辆车每趟可获利1000元;若未发车,则每辆车每天平均亏损200元.为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货车?

(1)求该物流公司每天从甲地到乙地平均可配送的货物量;
(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每趟最多只能装载40件货物,满载发车,否则不发车.若发车,则每辆车每趟可获利1000元;若未发车,则每辆车每天平均亏损200元.为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货车?
某高中学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制.各等级划分标准见图表.规定:A,B,C三级为合格等级,D为不合格等级.
为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图①所示,样本中原始成绩在80分及以上的所有数据的茎叶图如图②所示.

(1)求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;
(2)在选取的样本中,从成绩为A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生的成绩是A等级的概率.
分数 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | A | B | C | D |
为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图①所示,样本中原始成绩在80分及以上的所有数据的茎叶图如图②所示.

(1)求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;
(2)在选取的样本中,从成绩为A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生的成绩是A等级的概率.
从某小学随机抽取200名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取36人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为( )


A.3 | B.6 | C.9 | D.12 |
某水产品经销商销售某种鲜鱼,售价为每公斤
元,成本为每公斤
元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失
元.根据以往的销售情况,按
,
,
,
,
进行分组,得到如图所示的频率分布直方图.

(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数
(同一组中的数据用该组区间中点值代表);
(2)该经销商某天购进了
公斤这种鲜鱼,假设当天的需求量为
公斤
,利润为
元.求
关于
的函数关系式,并结合频率分布直方图估计利润
不小于
元的概率.









(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数

(2)该经销商某天购进了








天猫“双
”全球狂欢节正在火热进行,某天猫商家对
年“双
”期间的
名网络购物者的消费情况进行统计,发现消费金额(单位:万元)都在区间
内,其频率分布直方图如图所示:

(1)求直方图中的
的值.
(2)估计这
名网络购物者在
年度的消费的中位数和平均数.(保留小数点后三位)






(1)求直方图中的

(2)估计这


某市市民用水拟实行阶梯水价,每人用水量不超过
立方米的部分按
元/立方米收费,超出
立方米的部分按
元/立方米收费,从该市随机调查了
位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,

(Ⅰ)求
的值及居民用水量介于
的频数;
(Ⅱ)根据此次调查,为使
以上居民月用水价格为
元/立方米,应定为多少立方米?(精确到小数点后
位)
(Ⅲ)若将频率视为概率,现从该市随机调查
名居民的用水量,将月用水量不超过
立方米的人数记为
,求其分布列及其均值.






(Ⅰ)求


(Ⅱ)根据此次调查,为使



(Ⅲ)若将频率视为概率,现从该市随机调查


