- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:

由图可得,该炮兵连这8周中第__________周的命中频率最高.

由图可得,该炮兵连这8周中第__________周的命中频率最高.
某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下频数分布直方图:

该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的频率;
(2)已知选取的是1月与6月的两组数据.
(i)请根据2至5月份的数据,求出就诊人数
关于昼夜温差
的线性回归方程;
(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?
(参考公式:
,
)

该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的频率;
(2)已知选取的是1月与6月的两组数据.
(i)请根据2至5月份的数据,求出就诊人数


(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?
(参考公式:


空气质量指数(
,简称
)是定量描述空气质量状况的无量纲指数,参与空气质量评价的主要污染物为
等六项.空气质量按照
大小分为六级:一级
为优;二级
为良好;三级
为轻度污染;四级
为中度污染;五级
为重度污染;六级
为严重污染.
某人根据环境监测总站公布的数据记录了某地某月连续10天
的茎叶图如图所示:

(1)利用访样本估计该地本月空气质量优良(
)的天数;(按这个月总共30天计算);
(2)若从样本中的空气质量不佳(
)的这些天中,随机地抽取三天深入分析各种污染指标,求这三天的空气质量等级互不相同的概率.










某人根据环境监测总站公布的数据记录了某地某月连续10天


(1)利用访样本估计该地本月空气质量优良(

(2)若从样本中的空气质量不佳(

某校高三文科班150名男生在“学生体质健康50米跑”单项测试中,成绩全部介于6秒与11秒之间.现将测试结果分成五组:第一组
;第二组
,…,第五组
.下图是按上述分组方法得到的频率分布直方图.按国家标准,高三男生50米跑成绩小于或等于7秒认定为优秀,若已知第四组共48人,则该校文科班男生在这次测试中成绩优秀的人数是__________.




甲、乙、丙三名同学6次数学测试成绩及班级平均分(单位:分)如下表:
下列说法错误的是( )
| 第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 |
甲 | 95 | 87 | 92 | 93 | 87 | 94 |
乙 | 88 | 80 | 85 | 78 | 86 | 72 |
丙 | 69 | 63 | 71 | 71 | 74 | 74 |
全班 | 88 | 82 | 81 | 80 | 75 | 77 |
下列说法错误的是( )
A.甲同学的数学学习成绩高于班级平均水平,且较稳定 |
B.乙同学的数学成绩平均值是![]() |
C.丙同学的数学学习成绩低于班级平均水平 |
D.在6次测验中,每一次成绩都是甲第一、乙第二、丙第三 |
某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为15,那么由此求出的平均数与实际平均数的差是__________.
某学校举行物理竞赛,有8名男生和12名女生报名参加,将这20名学生的成绩制成茎叶图如图所示.成绩不低于80分的学生获得“优秀奖”,其余获“纪念奖”.
(Ⅰ)求出8名男生的平均成绩和12 名女生成绩的中位数;
(Ⅱ)按照获奖类型,用分层抽样的方法从这20名学生中抽取5人,再从选出的5人中任选3人,求恰有1人获“优秀奖”的概率.
(Ⅰ)求出8名男生的平均成绩和12 名女生成绩的中位数;
(Ⅱ)按照获奖类型,用分层抽样的方法从这20名学生中抽取5人,再从选出的5人中任选3人,求恰有1人获“优秀奖”的概率.

某校为了了解
两班学生寒假期间观看《中国诗词大会》的时长,分别从这两个班中随机抽取5名学生进行调查,将他们观看的时长(单位:小时)作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)分别求出图中所给两组样本数据的平均值,并据此估计哪个班的学生平均观看的时间较长;
(2)从
班的样本数据中随机抽取一个不超过19的数据记为
,从
班的样本数据中随机抽取一个不超过21的数据记为
,求
的概率.


(1)分别求出图中所给两组样本数据的平均值,并据此估计哪个班的学生平均观看的时间较长;
(2)从




