- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从某小区抽取100户居民进行月用电量调查,发现其用电量都在50~350度之间,频率分布直方图如图所示:

(1)直方图中x的值为________;
(2)在这些用户中,用电量落在区间[100,250)内的户数为________.

(1)直方图中x的值为________;
(2)在这些用户中,用电量落在区间[100,250)内的户数为________.
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.


⑴求全班人数及分数在
之间的频数;
⑵估计该班的平均分数,并计算频率分布直方图中
间的矩形的高;
⑶若要从分数在
之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在
之间的概率.


⑴求全班人数及分数在

⑵估计该班的平均分数,并计算频率分布直方图中

⑶若要从分数在


目前南昌市正在进行师大地铁站点围挡建设,为缓解北京西路交通压力,计划将该路段实施“交通限行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:

(1)完成被调查人员年龄的频率分布直方图;
(2)若从年龄在
的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通限行”的人数为
,求随机变量
的分布列和数学期望.

(1)完成被调查人员年龄的频率分布直方图;
(2)若从年龄在




为了调查学生每天零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.样本容量1000的频率分布直方图如图所示,则样本数据落在[6,14)内的频数为( )


A.780 | B.680 | C.648 | D.460 |
某校从参加高三年级期末考试的学生中随机抽取100名学生,将其数学成绩分成五段:
,
,它的频率分布直方图如图所示,则该批学生中成绩不低于90分的人数是_____.



为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组及各组的频数如下表:根据以上数表绘制相应的频率分布直方图时,落在
范围内的矩形的高应为 .

分组 | 频数 |
![]() | 12 |
![]() | 29 |
![]() | 46 |
![]() | 11 |
![]() | 2 |
(本小题满分13分)某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:

将近视程度由低到高分为4个等级:当近视度数在0-100时,称为不近视,记作0;当近视度数在100-200时,称为轻度近视,记作1;当近视度数在200-400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(Ⅰ)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(Ⅱ)设
,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(Ⅲ)把频率近似地看成概率,用随机变量
分别表示高二、高三年级学生的近视程度,若
,求
.

近视度数 | 0–100 | 100–200 | 200–300 | 300–400 | 400以上 |
学生频数 | 30 | 40 | 20 | 10 | 0 |
将近视程度由低到高分为4个等级:当近视度数在0-100时,称为不近视,记作0;当近视度数在100-200时,称为轻度近视,记作1;当近视度数在200-400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(Ⅰ)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(Ⅱ)设

(Ⅲ)把频率近似地看成概率,用随机变量



甲、乙两名同学在5次体能测试中的成绩的茎叶图如图所示,设
,
分别表示甲、乙两名同学测试成绩的平均数,
,
分别表示甲、乙两名同学测试成绩的标准差,则有






A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |