- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校开展信息技术技能比赛,并从参赛学生中选
个参加全区信息技术技能大赛,经过
轮选拔,甲、乙两人成绩突出,得分情况如茎叶图所示.若甲乙两人的平均成绩分别是
,
,则下列说法正确的是( )





A.![]() |
B.![]() |
C.![]() |
D.![]() |
为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于
到
之间,将数据分成以下
组:第
组
,第
组
,第
组
,第
组
,第
组
,得到如图所示的频率分布直方图,现采用分层抽样的方法,从第
,
,
组中随机抽取
名学生做初检.
(
)求每组抽取的学生人数.
(
)若从
名学生中再次随机抽取
名学生进行复检,求这
名学生不在同一组的概率.

















(

(





如图,从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出的频率分布直方图如下:

观察图形,回答下列问题:
(1)估计这次环保知识竞赛成绩的中位数;
(2)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率?

观察图形,回答下列问题:
(1)估计这次环保知识竞赛成绩的中位数;
(2)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率?
某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组
,第二组
,,第五组
,下图是按上述分组方法得到的频率分布直方图.

(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;
(2)请估计学校1800名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数和中位数.




(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;
(2)请估计学校1800名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数和中位数.
如图
是某高三学生进入高中三年来的数学考试成绩茎叶图,第
次到第
次的数学成绩依次记为
.如图
是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是__________.






200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h的汽车数量为 ( )


A.65辆 | B.76辆 | C.88 辆 | D.辆95 |
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成
小块地,在总共
小块地中.随机选
小块地种植品种甲,另外
小块地种植品种乙.
(
)假设
,求第一大块地都种植品种甲的概率.
(
)试验时每大块地分成
小块.即
,试验结束后得到品种甲和品种乙在各个小块地上的每公顷产量(单位
)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?




(


(




品种甲 | ![]() | ![]() | ![]() | ![]() | ![]() |
品种乙 | ![]() | ![]() | ![]() | ![]() | ![]() |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
某校高一(1)班全体男生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图所示,据此解答如下问题:
(1)求该班全体男生的人数;
(2)求分数在
之间的男生人数,并计算频率公布直方图中
之间的矩形的高;
(1)求该班全体男生的人数;
(2)求分数在



为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?
(3)通过该统计图,可以估计该地学生跳绳次数的众数是______,中位数是_______.

(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?
(3)通过该统计图,可以估计该地学生跳绳次数的众数是______,中位数是_______.
