- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从高一年级随机选取100名学生,对他们期中考试的数学和语文成绩进行分析,成绩如图所示.

(Ⅰ)从这100名学生中随机选取一人,求该生数学和语文成绩均低于60分的概率;
(II)从语文成绩大于80分的学生中随机选取两人,记这两人中数学成绩高于80分的人数为
,求
的分布列和数学期望(
;
(Ill)试判断这100名学生数学成绩的方差
与语文成绩的方差
的大小.(只需写出结论).

(Ⅰ)从这100名学生中随机选取一人,求该生数学和语文成绩均低于60分的概率;
(II)从语文成绩大于80分的学生中随机选取两人,记这两人中数学成绩高于80分的人数为



(Ill)试判断这100名学生数学成绩的方差


抢“微信红包”已经成为中国百姓欢度春节时非常喜爱的一项活动.小明收集班内20名同学今年春节期间抢到红包金额
(元)如下(四舍五入取整数):
102 52 41 121 72
162 50 22 158 46
43 136 95 192 59
99 22 68 98 79
对这20个数据进行分组,各组的频数如下:
(Ⅰ)写出
的值,并回答这20名同学抢到的红包金额的中位数落在哪个组别;
(Ⅱ)记
组红包金额的平均数与方差分别为
组红包金额的平均数与方差分别为
,试分别比较
与
、
与
的大小;(只需写出结论)
(Ⅲ)从
两组的所有数据中任取2个数据,记这2个数据差的绝对值为
,求
的分布列和数学期望.

102 52 41 121 72
162 50 22 158 46
43 136 95 192 59
99 22 68 98 79
对这20个数据进行分组,各组的频数如下:
组别 | 红包金额分组 | 频数 |
![]() | ![]() | 2 |
![]() | ![]() | 9 |
![]() | ![]() | ![]() |
![]() | ![]() | 3 |
![]() | ![]() | ![]() |
(Ⅰ)写出

(Ⅱ)记







(Ⅲ)从



某大学导师计划从自己所培养的研究生甲、乙两人中选一人,参加雄安新区某部门组织的计算机技能大赛,两人以往5次的比赛成绩统计如下:(满分100分,单位:分).
(1)试比较甲、乙二人谁的成绩更稳定;
(2)在一次考试中若两人成绩之差的绝对值不大于2,则称两人“实力相当”.若从上述5次成绩中任意抽取2次,求恰有一次两人“实力相当”的概率.
| 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲的成绩 | 87 | 87 | 84 | 100 | 92 |
乙的成绩 | 100 | 80 | 85 | 95 | 90 |
(1)试比较甲、乙二人谁的成绩更稳定;
(2)在一次考试中若两人成绩之差的绝对值不大于2,则称两人“实力相当”.若从上述5次成绩中任意抽取2次,求恰有一次两人“实力相当”的概率.
某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为了研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:
,分别加以统计,得到如图所示的频率分布直方图.

(1)根据“25周岁以上组”的频率分布直方图,求25周岁以上组工人日平均生产件数的中位数的估计值(四舍五入保留整数);
(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(3)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成
列联表,并判断是否有
的把握认为“生产能手与工人所在年龄组有关”?
附:


(1)根据“25周岁以上组”的频率分布直方图,求25周岁以上组工人日平均生产件数的中位数的估计值(四舍五入保留整数);
(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(3)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成


| 生产能手 | 非生产能手 | 合计 |
25周岁以上组 | | | |
25周岁以下组 | | | |
合计 | | | |
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
附:

甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是( )


A.甲、乙两人打靶的平均环数相等 |
B.甲的环数的中位数比乙的大 |
C.甲的环数的众数比乙的大 |
D.甲打靶的成绩比乙的更稳定 |
交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用 (基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费是与上一年度车辆发生道路交通安全违法行为或者道路交通事故的情况相联系的.交强险第二年价格计算公式具体如下:交强险最终保费
基准保费
(
浮动比率
).发生交通事故的次数越多,出险次数的就越多,费率也就越髙,具体浮动情况如下表:

某机构为了研究某一品牌普通6座以下私家车的投保情况,为此搜集并整理了100辆这一品牌普通6座以下私家车一年内的出险次数,得到下面的柱状图:

已知小明家里有一辆该品牌普通6座以下私家车且需要续保,续保费用为
元.
(1)记
为事件“
”,求
的估计值;
(2)求
的平均估计值.






某机构为了研究某一品牌普通6座以下私家车的投保情况,为此搜集并整理了100辆这一品牌普通6座以下私家车一年内的出险次数,得到下面的柱状图:

已知小明家里有一辆该品牌普通6座以下私家车且需要续保,续保费用为

(1)记



(2)求

为了调查某社区中学生的课外活动,对该社区的100名中学生进行了调研,随机抽取了若干名,年龄全部介于13与18之间,将年龄按如下方式分成五组:第一组
;第二组
;第五组
.按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三个组的频率之比为
,且第二组的频数为4.

(1)试估计这100名中学生中年龄在
内的人数;
(2)求调研中随机抽取的人数.





(1)试估计这100名中学生中年龄在

(2)求调研中随机抽取的人数.
从2017年1月18日开始,支付宝用户可以通过“
扫‘福’字”和“参与蚂蚁森林”两种方式获得福卡(爱国福、富强福、和谐福、友善福,敬业福),除夕夜
,每一位提前集齐五福的用户都将获得一份现金红包.某髙校一个社团在年后开学后随机调査了80位该校在读大学生,就除夕夜
之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:

(1)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;
(2)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.




(1)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;
(2)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.
某养殖的水产品在临近收获时,工人随机从水中捕捞
只,其质量分别在
(单位:克),经统计分布直方图如图所示.

(1)求这组数据的众数;
(2)现按分层抽样从质量为
的水产品种随机抽取
只,在从这
只中随机抽取
只,求这
只水产品恰有
只在
内的概率;
(3)某经销商来收购水产品时,该养殖场现还有水产品共计约
只要出售,经销商提出如下两种方案:
方案A:所有水产品以
元/只收购;
方案B:对于质量低于
克的水产品以
元/只收购,不低于
克的以
元/只收购,
通过计算确定养殖场选择哪种方案获利更多?




(1)求这组数据的众数;
(2)现按分层抽样从质量为







(3)某经销商来收购水产品时,该养殖场现还有水产品共计约

方案A:所有水产品以

方案B:对于质量低于




通过计算确定养殖场选择哪种方案获利更多?
为了解学生在课外活动方面的支出情况,抽取了
个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[10,50],其中支出金额在[30,50]的学生有134人,频率分布直方图如图所示,则
=()




A.150 | B.160 | C.180 | D.200 |