- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校400名学生在一次百米赛跑测试中,成绩全部都在12秒到17秒之间,现抽取其中50个样本,将测试结果按如下方式分成五组:第一组
,第二组
,…,第五组
,如图所示的是按上述分组方法得到的频率分布直方图.

(1)请估计该校400名学生中,成绩属于第三组的人数;
(2)请估计样本数据的中位数(精确到0.01);
(3)若样本第一组中只有一名女生,其他都是男生,第五组则只有一名男生,其他都是女生,现从第一、第五组中各抽取2名同学组成一个特色组,设其中男同学的人数为
,求
的分布列和期望.




(1)请估计该校400名学生中,成绩属于第三组的人数;
(2)请估计样本数据的中位数(精确到0.01);
(3)若样本第一组中只有一名女生,其他都是男生,第五组则只有一名男生,其他都是女生,现从第一、第五组中各抽取2名同学组成一个特色组,设其中男同学的人数为


某商场在今年某节日的促销活动中,对当天9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为5万元,则11时至12时的销售额为


A.10万元 | B.15万元 | C.20万元 | D.25万元 |
为了了解某校九年级1 600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据直方图的数据,下列结论错误的是( )
A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25 |
B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5 |
C.该校九年级学生1分钟仰卧起坐的次数超过30次的约有320人 |
D.该校九年级学生1分钟仰卧起坐的次数少于20次的约有32人 |
统计新生婴儿的体重,其频率分布直方图如图所示(每组含右端点,不含左端点),则新生婴儿体重在(2 700,3 000]克内的频率为( )
A.0.001 | B.0.1 |
C.0.2 | D.0.3 |
某人为研究中学生的性别与每周课外阅读量这两个变量的关系,随机抽查了100名中学生,得到频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
(Ⅱ)在样本数据中,有20位女生的每周课外阅读时间超过4小时,15位男生的每周课外阅读时间没有超过4小时.请画出每周课外阅读时间与性别列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“该校学生的每周课外阅读时间与性别有关”.
附:
(Ⅱ)在样本数据中,有20位女生的每周课外阅读时间超过4小时,15位男生的每周课外阅读时间没有超过4小时.请画出每周课外阅读时间与性别列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“该校学生的每周课外阅读时间与性别有关”.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:

为了响应我市“创建宜居港城,建设美丽莆田”,某环保部门开展以“关爱木兰溪,保护母亲河”为主题的环保宣传活动,将木兰溪流经市区河段分成
段,并组织青年干部职工对每一段的南、北两岸进行环保综合测评,得到分值数据如下表:
(Ⅰ)记评分在
以上(包括
)为优良,从中任取一段,求在同一段中两岸环保评分均为优良的概率;
(Ⅱ)根据表中数据完成下面茎叶图;

(Ⅲ)分别估计两岸分值的中位数,并计算它们的平均值,试从计算结果分析两岸环保情况,哪边保护更好.

南岸 | 77 | 92 | 84 | 86 | 74 | 76 | 81 | 71 | 85 | 87 |
北岸 | 72 | 87 | 78 | 83 | 83 | 85 | 75 | 89 | 90 | 95 |
(Ⅰ)记评分在


(Ⅱ)根据表中数据完成下面茎叶图;

(Ⅲ)分别估计两岸分值的中位数,并计算它们的平均值,试从计算结果分析两岸环保情况,哪边保护更好.
博鳌亚洲论坛2015年会员大会于3月27日在海南博鳌举办,大会组织者对招募的100名服务志愿者培训后,组织一次
知识竞赛,将所得成绩制成如右频率分布直方图(假定每个分数段内的成绩均匀分布),组织者计划对成绩前20名的参赛者进行奖励.

(1)试确定受奖励的分数线;
(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上的概率.


(1)试确定受奖励的分数线;
(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上的概率.
根据国家环保部新修订的《环境空气质量标准》规定:居民区
的年平均浓度不得超过3S微克/立方米,
的24小时平均浓度不得超过75微克/立方米.某市环保局随机抽取了一居民区2016年20天
的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如图表:
(Ⅰ)将这20天的测量结果按表中分组方法绘制成的样本频率分布直方图如图.
(ⅰ)求图中
的值;
(ⅱ)在频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从
的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(Ⅱ)将频率视为概率,对于2016年的某3天,记这3天中该居民区
的24小时平均浓度符合环境空气质量标准的天数为
,求
的分布列和数学期望.



组别 | ![]() | 频数(天) | 频率 |
第一组 | ![]() | 3 | 0.15 |
第二组 | ![]() | 12 | 0.6 |
第三组 | ![]() | 3 | 0.15 |
第四组 | ![]() | 2 | 0.1 |

(Ⅰ)将这20天的测量结果按表中分组方法绘制成的样本频率分布直方图如图.
(ⅰ)求图中

(ⅱ)在频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从

(Ⅱ)将频率视为概率,对于2016年的某3天,记这3天中该居民区



某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.
(1)求出a,b的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学来自第5组的概率;
②求所抽取的2名同学来自同一组的概率.
组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0.16 |
第2组 | [60,70) | a | ■ |
第3组 | [70,80) | 20 | 0.40 |
第4组 | [80,90) | ■ | 0.08 |
第5组 | [90,100] | 2 | b |
合计 | | ■ | ■ |
(1)求出a,b的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.
①求所抽取的2名同学中至少有1名同学来自第5组的概率;
②求所抽取的2名同学来自同一组的概率.