- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
孝感市及周边地区的市民游玩又添新去处啦!孝感熙凤水乡旅游度假区于2017年10月1日正式对外开放.据统计,从2017年10月1日到10月7日参观孝感市熙凤水乡旅游度假区的人数如表所示:
(1)把这7天的参观人数看成一个总体,求该总体的众数和平均数(精确到0.1);
(2)用简单随机抽样方法从10月1日到10月4日中抽取2天,它们的参观人数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过1万的概率.
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数(万) | 11 | 13 | 8 | 9 | 7 | 8 | 10 |
(1)把这7天的参观人数看成一个总体,求该总体的众数和平均数(精确到0.1);
(2)用简单随机抽样方法从10月1日到10月4日中抽取2天,它们的参观人数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过1万的概率.
孝感星河天街购物广场某营销部门随机抽查了100名市民在2017年国庆长假期间购物广场的消费金额,所得数据如表,已知消费金额不超过3千元与超过3千元的人数比恰为3:2.

(1)试确定
,
,
,
的值,并补全频率分布直方图(如图);
(2)用分层抽样的方法从消费金额在
、
和
的三个群体中抽取7人进行问卷调查,则各小组应抽取几人?若从这7人中随机选取2人,则此2人来自同一群体的概率是多少?

(1)试确定




(2)用分层抽样的方法从消费金额在



如图为某市2015年各月平均气温(
)的数据茎叶图,则下列说法正确的是( )



A.中位数是19.5 | B.众数是19.5 | C.平均数是19.5 | D.以上都不对 |
某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1个该产品获利润5元,未售出的产品,每个亏损3元.根据历史资料,得到开学季市场需求量的频率分布直方图如图所示.该同学为这个开学季购进了160个该产品,以
(
,单位:个)表示这个开学季内的市场需求量.

(1)根据直方图估计这个开学季内市场需求量
的中位数;
(2)根据直方图估计利润不少于640元的概率.



(1)根据直方图估计这个开学季内市场需求量

(2)根据直方图估计利润不少于640元的概率.
某高校调查了400名大学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].则从这400名大学生中抽出1人,每周自习时间少于20小时的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
某重点高中拟把学校打造成新型示范高中,为此制定了学生“七不准”,“一日三省十问”等新的规章制度.新规章制度实施一段时间后,学校就新规章制度随机抽取部分学生进行问卷调查,调查卷共有10个问题,每个问题10分,调查结束后,按分数分成5组:
,
,
,
,
,并作出频率分布直方图与样本分数的茎叶图(图中仅列出了得分在
,
的数据).
(1)求样本容量
和频率分布直方图中的
的值;
(2)在选取的样本中,从分数在70分以下的学生中随机抽取2名学生进行座谈会,求所抽取的2名学生中恰有一人得分在
内的概率.








(1)求样本容量


(2)在选取的样本中,从分数在70分以下的学生中随机抽取2名学生进行座谈会,求所抽取的2名学生中恰有一人得分在



供电部门对某社区
位居民2016年11月份人均用电情况进行统计后,按人均用电量分为
,
,
,
,
五组,整理得到如下的频率分布直方图,则下列说法错误的是( )








A.11月份人均用电量人数最多的一组有![]() |
B.11月份人均用电量不低于![]() ![]() |
C.11月份人均用电量为![]() |
D.在这![]() ![]() ![]() ![]() |
某市对创“市级优质学校”的甲、乙两所学校复查验收,对办学的社会满意度一项评价随机访问了
位市民,根据这
位市民对这两所学校的评分(评分越高表明市民的评价越好),绘制茎叶图如下:

(1)分别估计该市的市民对甲、乙两所学校评分的中位数;
(2)分别估计该市的市民对甲、乙两所学校的评分不低于
分的概率;
(3)根据茎叶图分析该市的市民对甲、乙两所学校的评价.



(1)分别估计该市的市民对甲、乙两所学校评分的中位数;
(2)分别估计该市的市民对甲、乙两所学校的评分不低于

(3)根据茎叶图分析该市的市民对甲、乙两所学校的评价.
某小学为了解本校某年级女生的身高情况,从本校该年级的学生中随机选出100名女生并统计她们的身高(单位:
),得到下面的频数分布表:

(1)用分层抽样的方法从身高在
和
的女生中共抽取6人,则身高在
的女生应抽取几人?
(2)在(1)中抽取的6人中,再随机抽取2人,求这2人身高都在
内的概率.


(1)用分层抽样的方法从身高在



(2)在(1)中抽取的6人中,再随机抽取2人,求这2人身高都在
