- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校一年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为140的样本,则此样本中男生人数为( )
A.80 | B.120 | C.160 | D.240 |
如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生、女生各
名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取
人,则抽取的男生人数为__________________.



2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:
约定:此单位45岁
59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.
(1)抽出的青年观众与中年观众分别为多少人?
(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列2×2列联表,并回答能否有90%的把握认为年龄层与热衷关心民生大事有关?
(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2 人能胜任的2人能胜任才艺表演的概率是多少?
年龄段 | ![]() | ![]() | ![]() | ![]() |
人数(单位:人) | 180 | 180 | 160 | 80 |
约定:此单位45岁

(1)抽出的青年观众与中年观众分别为多少人?
(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列2×2列联表,并回答能否有90%的把握认为年龄层与热衷关心民生大事有关?
| 热衷关心民生大事 | 不热衷关心民生大事 | 总计 |
青年 | | 12 | |
中年 | | 5 | |
总计 | | | 30 |
(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2 人能胜任的2人能胜任才艺表演的概率是多少?
某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为
A.12 | B.14 | C.16 | D.18 |
针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
(1)在所有参与调查的人中,用分层抽样的方法抽取
个人,已知从持“不支持”态度的人中抽取了
人,求
的值;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取
人看成一个总体,从这
人中任意选取
人,求
岁以下人数
的分布列和期望;
(3)在接受调查的人中,有
人给这项活动打出的分数如下:
,
,
,
,
,
,
,
,
,
,把这
个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过
概率.
| 支持 | 保留 | 不支持 |
50岁以下 | 8000 | 4000 | 2000 |
50岁以上(含50岁) | 1000 | 2000 | 3000 |
(1)在所有参与调查的人中,用分层抽样的方法抽取



(2)在持“不支持”态度的人中,用分层抽样的方法抽取





(3)在接受调查的人中,有













某校按分层抽样的方法从高中三个年级抽取部分学生调查,从三个年级抽取人数的比例为如图所示的扇形面积比,已知高二年级共有学生1 200人,并从中抽取了40人.

(1)该校的总人数为多少?(2)三个年级分别抽取多少人?
(3)在各层抽样中可采取哪种抽样方法?

(1)该校的总人数为多少?(2)三个年级分别抽取多少人?
(3)在各层抽样中可采取哪种抽样方法?
某中学有高一学生400人,高二学生300人,高三学生500人,现用分层抽样的方法在这三个年级中抽取120人进行体能测试,则从高三抽取的人数应为( )
A.40 | B.48 | C.80 | D.50 |
某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,若用分层抽样方法,则40岁以下年龄段应抽取( )


A.10人 | B.15人 | C.20人 | D.25人 |
全国大学生机器人大赛是由共青团中央,全国学联,深圳市人民政府联合主办的赛事,是中国最具影响力的机器人项目,是全球独创的机器人竞技平台.全国大学生机器人大赛比拼的是参赛选手们的能力,坚持和态度,展现的是个人实力以及整个团队的力量.2015赛季共吸引全国240余支机器人战队踊跃报名,这些参赛战队来自全国六大赛区,150余所高等院校,其中不乏北京大学,清华大学,上海交大,中国科大,西安交大等众多国内顶尖高校,经过严格筛选,最终由111支机器人战队参与到2015年全国大学生机器人大赛的激烈角逐之中,某大学共有“机器人”兴趣团队1000个,大一、大二、大三、大四分别有100,200,300,400个,为挑选优秀团队,现用分层抽样的方法,从以上团队中抽取20个团队.
(1)应从大三抽取多少个团队?
(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试,甲、乙两组的分数如下:
甲:125,141,140,137,122,114,119,139,121,142
乙:127,116,144,127,144,116,140,140,116,140
从甲、乙两组中选一组强化训练,备战机器人大赛.从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?
(1)应从大三抽取多少个团队?
(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试,甲、乙两组的分数如下:
甲:125,141,140,137,122,114,119,139,121,142
乙:127,116,144,127,144,116,140,140,116,140
从甲、乙两组中选一组强化训练,备战机器人大赛.从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?