- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )
①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;
②用简单随机抽样的方法从新生中选出100人;
③西部地区学生小刘被选中的概率为
;
④中部地区学生小张被选中的概率为
①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;
②用简单随机抽样的方法从新生中选出100人;
③西部地区学生小刘被选中的概率为

④中部地区学生小张被选中的概率为

A.①④ | B.①③ | C.②④ | D.②③ |
从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( )
A.112种 | B.100种 | C.90种 | D.80种 |
某校为了解学生数学学习的情况,采用分层抽样的方法从高一
人、高二
人、高三
人中,抽取
人进行问卷调查,已知高二被抽取的人数为
,那么
( )






A.![]() | B.![]() | C.![]() | D.![]() |
一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本,需抽出的男运动员的人数为 __________.
某学校高一年级有学生
名,高二年级有
学生名.现用分层抽样方法(按高一年级、高二年级分二层)从该校的学生中抽取
名学生,调查他们的数学学习能力.
(Ⅰ)高一年级学生中和高二年级学生中各抽取多少学生?
(Ⅱ)通过一系列的测试,得到这
名学生的数学能力值.分别如表一和表二
表一:
表二:
①确定
,并在答题纸上完成频率分布直方图;
②分别估计该校高一年级学生和高二年级学生的数学能力值的平均数(同一组中的数据用该组区间的中点值作代表);
③根据已完成的频率分布直方图,指出该校高一年级学生和高二年级学生的数学能力值分布特点的不同之处(不用计算,通过观察直方图直接回答结论)



(Ⅰ)高一年级学生中和高二年级学生中各抽取多少学生?
(Ⅱ)通过一系列的测试,得到这

表一:
高一年级 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
表二:
高二年级 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
①确定

②分别估计该校高一年级学生和高二年级学生的数学能力值的平均数(同一组中的数据用该组区间的中点值作代表);
③根据已完成的频率分布直方图,指出该校高一年级学生和高二年级学生的数学能力值分布特点的不同之处(不用计算,通过观察直方图直接回答结论)
某省数学学业水平考试成绩共分为
、
、
、
四个等级,在学业水平考试成绩分布后,从该省某地区考生中随机抽取
名考生,统计他们的数学成绩,部分数据如下:
(1)补充完成上述表格的数据;
(2)现按上述四个等级,用分层抽样方法从这
名考生中抽取
名.在这
名考生中,从成绩为
等和
等的所有考生中随机抽取
名,求至少有
名成绩为
等的概率.





等级 | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | | ![]() | |
频率 | | | | ![]() |
(1)补充完成上述表格的数据;
(2)现按上述四个等级,用分层抽样方法从这








在某超市,随机调查了100名顾客购物时使用手机支付支付的情况,得到如下的
列联表,已知从其中使用手机支付的人群中随机抽取1人,抽到青年的概率为
.
(1)根据已知条件完成
列联表,并根据此资料判断是否有99.9%的把握认为“超市购物用手机支付与年龄有关”.
(2)现按照“使用手机支付”和“不使用手机支付”进行分层抽样,从这100名顾客中抽取容量为5的样本,求“从样本中任选3人,则3人中至少2人使用手机支付”的概率.
附:


(1)根据已知条件完成

(2)现按照“使用手机支付”和“不使用手机支付”进行分层抽样,从这100名顾客中抽取容量为5的样本,求“从样本中任选3人,则3人中至少2人使用手机支付”的概率.
| 青年 | 中老年 | 合计 |
使用手机支付 | | | 60 |
不使用手机支付 | | 28 | |
合计 | | | 100 |
![]() | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:

某中学有高中生
人,初中生
人,高中生中男生、女生人数之比为
,初中生中男生、女生人数之比为
,为了解学生的学习状况,用分层抽样的方法从该校学生中抽取一个容量为
的样本,已知从初中生中抽取男生
人,则从高中生中抽取的女生人数是






A.![]() | B.![]() | C.![]() | D.![]() |
某产品生产线上,一天内每隔60分钟抽取一件产品,则该抽样方法为①;某中学从30名机器人爱好者中抽取3人了解学习负担情况,则该抽取方法为②,那么
A.①是系统抽样,②是简单随机抽样 | B.①是分层抽样,②是简单随机抽样 |
C.①是系统抽样,②是分层抽样 | D.①是分层抽样,②是系统抽样 |
某中学为了解高一年级学生身高发育情况,对全校
名高一年级学生按性别进行分层抽样检查,测得身高(单位:
)频数分布表如表
、表
.
表
:男生身高频数分布表
表
:女生身高频数分布表
(1)求该校高一女生的人数;
(2)估计该校学生身高在
的概率;
(3)以样本频率为概率,现从高一年级的男生和女生中分别选出
人,设
表示身高在
学生的人数,求
的分布列及数学期望.




表

身高/![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
表

身高/![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求该校高一女生的人数;
(2)估计该校学生身高在

(3)以样本频率为概率,现从高一年级的男生和女生中分别选出



