- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为
件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取
件进行检验,则应从丙种型号的产品中抽取( )件.


A.24 | B.18 | C.12 | D.6 |
某企业员工500人参加“学雷锋”活动,按年龄共分六组,得频率分布直方图如下:

(1)现在要从年龄较小的第1、2、3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的各抽取多少人?
(2)在第(1)问的前提下,从这6人中随机抽取2人参加社区活动,求至少有1人年龄在第3组的概率.

(1)现在要从年龄较小的第1、2、3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的各抽取多少人?
(2)在第(1)问的前提下,从这6人中随机抽取2人参加社区活动,求至少有1人年龄在第3组的概率.
2013年春节,有超过20万名广西、四川等省籍的外来务工人员选择驾驶摩托车沿321国道返乡过年,为保证他们的安全,交管部门在321国道沿线设立多个驾乘人员休息站,交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车,就进行省籍询问一次,询问结果如下图所示.

(Ⅰ)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?
(Ⅱ)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?
(Ⅲ)在上述抽出的驾驶人员中任取2名,求至少有一名驾驶人员是广西籍的概率.

(Ⅰ)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?
(Ⅱ)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?
(Ⅲ)在上述抽出的驾驶人员中任取2名,求至少有一名驾驶人员是广西籍的概率.
某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(1)求第3,4,5组的频率;
(2)为了了解最优秀学生的情况,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试.






(1)求第3,4,5组的频率;
(2)为了了解最优秀学生的情况,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试.
某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本
若样本中的青年职工为21人,则样本容量为______.

某师范大学的数学学院、物理学院、化学学院、生物学院今年共录取本科新生5200人,且知四个学院录取的新生人数比为5:4:3:1,现用分层抽样的方法从这些本科新生中抽取一个容量为260的样本,则物理学院应抽取学生( )
A.100人 | B.60人 | C.80人 | D.20人 |
某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
| 打算观看 | 不打算观看 |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,用分层抽样抽取一个容量为20的样本,则应抽取的后勤人员人数是( ).
A.3 | B.2 | C.15 | D.4 |
随着互联网的发展,移动支付(又称手机支付)越来越普遍,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有
个人,把这
个人按照年龄分成5组:第1组
,第2组
,第3组
,第4组
,第5组
,然后绘制成如图所示的频率分布直方图,其中,第一组的频数为20.

(1)求
和
的值,并根据频率分布直方图估计这组数据的众数;
(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.








(1)求


(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.
我国古代数学名著《九章算术》中有如下问题“今有北乡八千七百五十八,西乡七千二百三十六,南乡八千三百五十六,凡三乡,发役三百七十八人,欲以算数多少出之,何各几何?”意思是:北乡有8758人,西乡有7236人,南乡有8356人,现要按人数多少从三乡共征集378人,问从各乡征集多少人?在上述问题中,需从西乡征集的人数是 ( )
A.102 | B.112 | C.130 | D.136 |