- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- + 系统抽样
- 系统抽样的特征及适用条件
- 等距抽样的组距与编号
- 非等距的系统抽样问题
- 写出系统抽样过程
- 系统抽样的概率
- 分层抽样
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校高一年级从1815名学生中选取30名学生参加春节联欢晚会的大合唱节目,若采用下面的方法选取:先用简单随机抽样从1815人中剔除15人,剩下的1800人再按系统抽样的方法抽取,则每人入选的概率( )
A.不全相等 | B.均不相等 |
C.都相等,且为![]() | D.都相等,且为![]() |
下列说法中错误的是( )
A.先把高二年级的![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
B.正态分布![]() ![]() ![]() |
C.若两个随机变量的线性相关性越强,则相关系数![]() ![]() |
D.若一组数据![]() ![]() ![]() |
某校有高中生1470人,现采用系统抽样法抽取49人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、493人、482人)按1,2,3,…,1470编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为
A.15 | B.16 | C.17 | D.18 |
为有效促进我市体育产业和旅游产业有机融合,提高我市的知名度,更好地宣传萍乡武功山,并通过赛事向社会各界传播健康、低碳、绿色、环保的运动理念。在今年9月21日第九届环鄱阳湖国际自行车大赛第九站比赛在我市武功山举行。在这次89.5公里的自行车个人赛中,其中25名参赛选手的成绩(单位:分钟)的茎叶图如图所示:
(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人,已知选手甲的成绩为145分钟,若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性,试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.
14 | 0 | 1 | 2 | 3 | 5 | 6 | 6 | 6 | 6 | 8 | 9 |
15 | 0 | 2 | 3 | 4 | 5 | 5 | 5 | 7 | 9 | | |
16 | 0 | 0 | 5 | 6 | 7 | | | | | | |
(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人,已知选手甲的成绩为145分钟,若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性,试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.
某质检人员从编号为1~100这100件产品中,依次抽出号码为3,13,23,…,93的产品进行检验,则这样的抽样方法是( )
A.简单随机抽样 | B.系统抽样 |
C.分层抽样 | D.以上都不对 |
某单位有360名职工,现采用系统抽样方法,抽取20人做问卷调查,将360人按1,2,…,360随机编号,则抽取的20人中,编号落入区间
的人数为__________.

某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2400名学生中抽取30人进行调查.现将2400名学生随机地从1~2400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2321~2400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是( )
A.416 | B.432 | C.448 | D.464 |
某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( )
A.15 | B.18 |
C.21 | D.22 |
某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本,已知学号为3号、16号、42号的同学在样本中,那么样本中还有一个同学的学号为__________.
将参加数学竞赛决赛的名同学编号为
,采用系统抽样的方法抽取一个容量为
的样本,且随机抽到的号码为
,这
名同学分别在三个考试点考试,从
到
在第一考点,从
到
在第二考点,从
到
在第三考点,则第二考点被抽中的人数为( )










A.![]() | B.![]() | C.![]() | D.![]() |