在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:
潜伏期(单位:天)







人数







 
(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);
(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表. 请将列联表补充完整,并根据列联表判断是否有的把握认为潜伏期与患者年龄有关;
 
潜伏期
潜伏期
总计
50岁以上(含50岁)
 
 

50岁以下
55
 
 
总计
 
 
200
 
(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立. 为了深入研究,该研究团队随机调查了名患者,其中潜伏期超过6天的人数最有可能即概率最大)是多少?
附:
 



 



 
,其中.
当前题号:1 | 题型:解答题 | 难度:0.99
某厂为了评估某种零件生产过程的情况,制定如下规则:若零件的尺寸在,则该零件的质量为优秀,生产过程正常;若零件的尺寸在且不在,则该零件的质量为良好,生产过程正常;若零件的尺寸在且不在,则该零件的质量为合格,生产过程正常;若零件的尺寸不在,则该零件不合格,同时认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,(其中为样本平均数,为样本标准差)下面是检验员从某一天生产的一批零件中随机抽取的20个零件尺寸的茎叶图(单位:cm)经计算得,其中为抽取的第个零件的尺寸,.

(1)利用该样本数据判断是否需对当天的生产过程进行检查;
(2)利用该样本,从质量良好的零件中任意抽取两个,求抽取的两个零件的尺寸均超过的概率;
(3)剔除该样本中不在的数据,求剩下数据的平均数和标准差(精确到0.01)
参考数据:,,,
当前题号:2 | 题型:解答题 | 难度:0.99
为了解某中学学生对数学学习的情况,从该校抽了名学生,分析了这名学生某次数学考试成绩(单位:分),得到了如下的频率分布直方图:

(1)求频率分布直方图中的值;
(2)根据频率分布直方图估计该组数据的中位数(精确到);
(3)在这名学生的数学成绩中,从成绩在的学生中任选人,求次人的成绩都在中的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
为了调查学生参加公益劳动的情况,从某校随机抽取名学生,经统计得到他们参加公益劳动的次数均在区间内,其数据分组依次为:,,,,.

(1)若这名学生中,公益劳动次数在内的人数为人,求图中的值;
(2)估计该校学生参加公益劳动的次数不少于次的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
某大型企业生产的某批产品细分为个等级,为了了解这批产品的等级分布情况,从仓库存放的件产品中随机抽取件进行检测、分类和统计,并依据以下规则对产品进行打分:级或级产品打分;级或级产品打分;级、级、级或级产品打分;其余产品打分.现在有如下检测统计表:
等级
1
2
3
4
5
6
7
8
9
10
频数
10
90
100
200
200
100
100
100
70
30
 
规定:打分不低于分的为优良级.
(1)①试估计该企业库存的件产品为优良级的概率;
②请估计该企业库存的件产品的平均得分.
(2)从该企业库存的件产品中随机抽取件,请估计这件产品的打分之和为分的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
中央政府为了对应因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

(1)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异:

(2)若从年龄在的被调查人中随机选取两人进行调查,求选中的2人中恰有1人支持“延迟退休”的概率.
参考数据:

.
当前题号:6 | 题型:解答题 | 难度:0.99
某购物网站对在7座城市的线下体验店的广告费指出万元和销售额万元的数据统计如下表:
城市
A
B
C
D
E
F
G
广告费支出
1
2
4
6
11
13
19
销售额
19
32
40
44
52
53
54
 
(1)若用线性回归模型拟合yx关系,求y关于x的线性回归方程.
(2)若用对数函数回归模型拟合yx的关系,可得回归方程,经计算对数函数回归模型的相关指数约为0.95,请说明选择哪个回归模型更合适,并用此模型预测A城市的广告费用支出8万元时的销售额.
参考数据:
参考公式:
相关指数:(注意:公式中的相似之处)
当前题号:7 | 题型:解答题 | 难度:0.99
2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:
生猪存栏数量(千头)
2
3
4
5
8
头猪每天平均成本(元)
3.2
2.4
2
1.9
1.5
 
(1)研究员甲根据以上数据认为具有线性回归关系,请帮他求出关于的线.性回归方程(保留小数点后两位有效数字)
(2)研究员乙根据以上数据得出的回归模型:.为了评价两种模型的拟合效果,请完成以下任务:
①完成下表(计算结果精确到0.01元)(备注:称为相应于点的残差);
生猪存栏数量(千头)
2
3
4
5
8
头猪每天平均成本(元)
3.2
2.4
2
1.9
1.5
模型甲
估计值
 
 
 
 
 
残差
 
 
 
 
 
模型乙
估计值
3.2
2.4
2
1.76
1.4
残差
0
0
0
0.14
0.1
 
②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.
(3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)
参考公式:.
参考数据:.
当前题号:8 | 题型:解答题 | 难度:0.99
为了解篮球爱好者小张的投篮命中率与打篮球时间之间的关系,下表记录了小张某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:
时间
1
2
3
4
5
命中率
0.4
0.5
0.6
0.6
0.4
 
(1)求小张这天的平均投篮命中率;
(2)利用所给数据求小张每天打篮球时间(单位:小时)与当天投篮命中率之间的线性回归方程;(参考公式:
(3)用线性回归分析的方法,预测小李该月号打小时篮球的投篮命中率.
当前题号:9 | 题型:解答题 | 难度:0.99
已知z,y之间的一组数据如下表:
x
1
3
6
7
8
y
1
2
3
4
5
 
(1)从x ,y中各取一个数,求x+y≥10的概率;
(2)对于表中数据,甲、乙两同学给出的拟合直线分别为,试利用“最小平方法(也称最小二乘法)”判断哪条直线拟合程度更好.
当前题号:10 | 题型:解答题 | 难度:0.99