- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中
点表示十月的平均最高气温约为
,
点表示四月的平均最低气温约为
.下面叙述不正确的是( )






A.各月的平均最高气温都在![]() |
B.六月的平均温差比九月的平均温差大 |
C.七月和八月的平均最低气温基本相同 |
D.平均最低气温高于![]() |
某市场研究人员为了了解产业园引进的甲公司前期的经营状况,采集相应数据,对该公司2017年连续六个月的利润进行了统计,并绘制了相应的折线图,如图所示:

(1)折线图可以看出,可用线性回归模型拟合月利润
(单位:百万元)与月份代码
之间的关系,求
关于
的线性回归方程,并预测该公司2018年1月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有采购成本分别为10万元
包和12万元
包的
、
两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,不同类型的新型材料损坏的时间各不相同,已知生产新型材料的企业乙对
、
两种型号各100件新型材料进行过科学模拟测试,得到两种新型材料使用寿命频数统计如表:
经甲公司测算,平均每包新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每包新型材料的使用寿命都是整数月,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考数据:
,
.
参考公式:回归直线方程为
,其中
.

(1)折线图可以看出,可用线性回归模型拟合月利润




(2)甲公司新研制了一款产品,需要采购一批新型材料,现有采购成本分别为10万元






使用寿命 材料类型 | 1个月 | 2个月 | 3个月 | 4个月 | 总计 |
![]() | 20 | 35 | 35 | 10 | 100 |
![]() | 10 | 30 | 40 | 20 | 100 |
经甲公司测算,平均每包新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每包新型材料的使用寿命都是整数月,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考数据:


参考公式:回归直线方程为


十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:

(1)根据频率分布直方图,估计50位农民的年平均收入
元(单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布
,其中
近似为年平均收入
,
近似为样本方差
,经计算得
,利用该正态分布,求:
(i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?
附参考数据:
,若随机变量X服从正态分布
,则
,
,
.

(1)根据频率分布直方图,估计50位农民的年平均收入

(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布






(i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?
附参考数据:





我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),制作了频率分布直方图,

(Ⅰ)用该样本估计总体:
(1)估计该市居民月均用水量的平均数;
(2)如果希望86%的居民每月的用水量不超出标准,则月均用水量a的最低标准定为多少吨?
(Ⅱ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量,其中月均用水量不超过2.5吨的人数为X,求X的分布列和均值.

(Ⅰ)用该样本估计总体:
(1)估计该市居民月均用水量的平均数;
(2)如果希望86%的居民每月的用水量不超出标准,则月均用水量a的最低标准定为多少吨?
(Ⅱ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量,其中月均用水量不超过2.5吨的人数为X,求X的分布列和均值.
为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照
,
,
,
,
分为5组,其频率分布直方图如图所示.

(1)求图中
的值;
(2)估计这种植物果实重量的平均数
和方差
(同一组中的数据用该组区间的中点值作代表);
(3)已知这种植物果实重量不低于32.5克的即为优质果实,用样本估计总体.若从这种植物果实中随机抽取3个,其中优质果实的个数为
,求
的分布列和数学期望
.






(1)求图中

(2)估计这种植物果实重量的平均数


(3)已知这种植物果实重量不低于32.5克的即为优质果实,用样本估计总体.若从这种植物果实中随机抽取3个,其中优质果实的个数为



某汽车零件加工厂为迎接国庆大促销活动预估国庆七天销售量,该厂工作人员根据以往该厂的销售情况,绘制了该厂日销售量的频率分布直方图,如图所示,将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)根据频率分布直方图估计该厂的日平均销售量;(每组以中点值为代表)
(2)求未来
天内,连续
天日销售量不低于
吨,另一天日销售量低于
吨的概率;
(3)用
表示未来
天内日销售量不低于
吨的天数,求随机变量
的分布列、数学期望与方差.

(1)根据频率分布直方图估计该厂的日平均销售量;(每组以中点值为代表)
(2)求未来




(3)用




在统计调查中,问卷的设计是一门很大的学问,特别是对一些敏感性问题.例如学生在考试中有无作弊现象,社会上的偷税漏税等.更要精心设计问卷.设法消除被调查者的顾虑,使他们能够如实回答问题,否则被调查者往往会拒绝冋答,或不提供真实情况,为了调查中学生中的早恋现象,随机抽出300名学生,调查中使用了两个问題.①你的学籍号的最后一位数是奇数(学籍号的后四位是序号);②你是否有早恋现象,让被调查者从装有4个红球,6个黑球(除颜色外完全相同)的袋子中随机摸取两个球.摸到两球同色的学生如实回答第一个问题,摸到两球异色的学生如实回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么都不放,后来在盒子中收到了78个小石子.
(1)你能否估算出中学生早恋人数的百分比?
(2)若从该地区中学生中随机抽取一个班(40人),设其中恰有
个人存在早恋的现象,求
的分布列及数学期望.
(1)你能否估算出中学生早恋人数的百分比?
(2)若从该地区中学生中随机抽取一个班(40人),设其中恰有


红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.(表中
)

(1)根据散点图判断,
与
(其中
自然对数的底数)哪一个更适宜作为平均产卵数y关于平均温度x的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出y关于x的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为
.
①记该地今后5年中,恰好需要3次人工防治的概率为
,求
的最大值,并求出相应的概率p.
②当
取最大值时,记该地今后5年中,需要人工防治的次数为X,求X的数学期望和方差.
附:线性回归方程系数公式
.


平均温度![]() | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均产卵数![]() | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
![]() | ![]() | ![]() | ![]() | ![]() | |||||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根据散点图判断,



(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为

①记该地今后5年中,恰好需要3次人工防治的概率为


②当

附:线性回归方程系数公式

某城市一社区接到有关部门的通知,对本社区居民用水量进行调研,通过抽样调查的方法获得了100户居民某年的月均用水量(单位:t),通过分组整理数据,得到数据的频率分布直方图如图所示:

(Ⅰ)求图中m的值;并估计该社区居民月均用水量的中位数和平均值.(保留3位小数)
(Ⅱ)用此样本频率估计概率,若从该社区随机抽查3户居民的月均用水量,问恰有2户超过
的概率为多少?
(Ⅲ)若按月均用水量
和
分成两个区间用户,按分层抽样的方法抽取10户,每户出一人参加水价调整方案听证会.并从这10人中随机选取3人在会上进行陈述发言,设来自用水量在区间
的人数为X,求X的分布列和数学期望.

(Ⅰ)求图中m的值;并估计该社区居民月均用水量的中位数和平均值.(保留3位小数)
(Ⅱ)用此样本频率估计概率,若从该社区随机抽查3户居民的月均用水量,问恰有2户超过

(Ⅲ)若按月均用水量


