- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列说法中错误的是( )
A.总体中的个体数不多时宜用简单随机抽样 |
B.系统抽样过程中,在总体均分后的每一部分中抽取一个个体,得到所需样本 |
C.百货商场的抓奖活动是抽签法 |
D.整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外) |
某网络营销部门为了统计某市网友“双11”在某淘宝店的网购情况,随机抽查了该市当天60名网友的网购金额情况,得到如下数据统计表(如图):

若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2.
(1)试确定
的值,并补全频率分布直方图;
(2)试营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定5人,若需从这5人中随机选取2人进行问卷调查,则恰好选取1名“网购达人”和1名“非网购达人”的概率是多少?

若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2.
(1)试确定

(2)试营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定5人,若需从这5人中随机选取2人进行问卷调查,则恰好选取1名“网购达人”和1名“非网购达人”的概率是多少?
2016年年底以来,国内共享单车突然就火爆了起来,由于其符合低碳出行理念,共享单车已经越来越多地引起人们的注意.某市调查市民共享单车的使用情况,随机采访10位经常使用共享单车的市民,收集到他们每周使用的事件如下(单位:小时):

(1)根据以上数据,画出使用事件的茎叶图;
(2)求出其中位数,平均数,方差.

(1)根据以上数据,画出使用事件的茎叶图;
(2)求出其中位数,平均数,方差.
下表提供了某公司技术升级后生产
产品过程中记录的产量
(吨)与相应的成本
(万元)的几组对照数据:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出
对
的回归直线方程;
(3)已知该公司技术升级前生产100吨
产品的成本为90万元.试根据(2)求出的回归直线方程,预测技术升级后生产100吨
产品的成本比技术升级前约降低多少万元?
(附:
,
,其中
为样本平均值)




(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出


(3)已知该公司技术升级前生产100吨


(附:



酒后违法驾驶机动车危害巨大,假设驾驶人员血液中的酒精含量为
(简称血酒含量,单位是毫克/100毫升),当
时,为酒后驾车;当
时,为醉酒驾车.如图为某市交管部分在一次夜间行动中依法查出的
名饮酒后违法驾驶机动车者抽血检测后所得频率分布直方图(其中
人数包含
).

(Ⅰ)求查获的醉酒驾车的人数;
(Ⅱ)从违法驾车的
人中按酒后驾车和醉酒驾车利用分层抽样抽取
人做样本进行研究,再从抽取的
人中任取
人,求
人中含有醉酒驾车人数
的分布列和数学期望.







(Ⅰ)求查获的醉酒驾车的人数;
(Ⅱ)从违法驾车的






某地政府为了对房地产市场进行调控决策,统计部门对外来人口和当地人口进行了买房的心理预期调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表(不全):

已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,求选取的3人的指标之和大于5的概率.

已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,求选取的3人的指标之和大于5的概率.
某产品在某零售摊位上的零售价
(元)与每天的销售量
(个)统计如下表:
据上表可得回归直线方程
中的
,据此模型预计零售价定为
元时,销售量为( )


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
据上表可得回归直线方程



A.![]() | B.![]() | C.![]() | D.![]() |
某高校组织自主招生考试,共有2000名学生报名参加了笔试,成绩均介于195分到275分之间,从中随机抽取50名学生的成绩进行统计,将统计的结果按如下方式分成八组:第一组
,第二组
,……,第八组
.如图是按上述分组方法得到的频率分布直方图:

(1)求
值和这2000名学生的平均分;
(2)若计划按成绩取1000名学生进入面试环节,试估计应将分数线定为多少?




(1)求

(2)若计划按成绩取1000名学生进入面试环节,试估计应将分数线定为多少?
为稳定当前物价,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场商品的售价
元和销售量
件之间的一组数据如下表所示:
由散点图可知,销售量
与价格
之间有较好的线性相关关系,其线性回归方程是
,则
__________.


价格![]() | 8.5 | 9 | 9.5 | 10 | 10.5 |
销售量![]() | 12 | 11 | 9 | 7 | 6 |
由散点图可知,销售量




为响应国家“精准扶贫,产业扶贫”的战略,某市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在
的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.

(Ⅰ)求图中
的值;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为
,求
的分布列及数学期望.


(Ⅰ)求图中

(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为

