- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 根据抛物线方程求焦点或准线
- 抛物线方程的四种形式与位置特征
- 抛物线的焦半径公式
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,设椭圆
:
,长轴的右端点与抛物线
:
的焦点
重合,且椭圆
的离心率是
.

(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过
作直线
交抛物线
于
,
两点,过
且与直线
垂直的直线交椭圆
于另一点
,求
面积的最小值,以及取到最小值时直线
的方程.








(Ⅰ)求椭圆

(Ⅱ)过











已知拋物线C:
经过点
,其焦点为F,M为抛物线上除了原点外的任一点,过M的直线l与x轴、y轴分别交于A,B两点.
Ⅰ
求抛物线C的方程以及焦点坐标;
Ⅱ
若
与
的面积相等,证明直线l与抛物线C相切.








已知抛物线
的焦点为
,圆
,过
作垂直于
轴的直线交抛物线
于
、
两点,且
的面积为
.
(I)求抛物线
的方程和圆
的方程;
(II)若直线
均过坐标原点
,且互相垂直,
交抛物线
于
,交圆
于
,
交抛物线
于
,交圆
于
,求
与
的面积比的最小值.










(I)求抛物线


(II)若直线














已知抛物线
的顶点在坐标原点,焦点为圆
的圆心.
(1)求抛物线
的标准方程和准线方程;
(2)若直线
为抛物线
的切线,证明:圆心
到直线
的距离恒大于
.


(1)求抛物线

(2)若直线





已知椭圆
:
的左、右有顶点分别是
、
,上顶点是
,圆
:
的圆心
到直线
的距离是
,且椭圆的右焦点与抛物线
的焦点重合.
(Ⅰ)求椭圆
的方程;
(Ⅱ)平行于
轴的动直线与椭圆和圆在第一象限内的交点分别为
、
,直线
、
与
轴的交点记为
,
.试判断
是否为定值,若是,证明你的结论.若不是,举反例说明.











(Ⅰ)求椭圆

(Ⅱ)平行于








