- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 根据抛物线方程求焦点或准线
- 抛物线方程的四种形式与位置特征
- 抛物线的焦半径公式
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设椭圆C:
,定义椭圆C的“相关圆”方程为
,若抛物线
的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和其两个焦点构成直角三角形。
(I)求椭圆C的方程和“相关圆”E的方程;
(II)过“相关圆”E上任意一点P作“相关圆”E的切线l与椭圆C交于A,B两点,O为坐标原点。
(i)证明∠AOB为定值;
(ii)连接PO并延长交“相关圆”E于点Q,求△ABQ面积的取值范围。



(I)求椭圆C的方程和“相关圆”E的方程;
(II)过“相关圆”E上任意一点P作“相关圆”E的切线l与椭圆C交于A,B两点,O为坐标原点。
(i)证明∠AOB为定值;
(ii)连接PO并延长交“相关圆”E于点Q,求△ABQ面积的取值范围。
已知抛物线C:
的焦点为F,准线l与x轴的交点为A,M是抛物线C上的点,且
轴
若以AF为直径的圆截直线AM所得的弦长为2,则
______.



