- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知以圆
的圆心为焦点的抛物线
与圆
在第一象限交于
点,
点是抛物线:
上任意一点,
与直线
垂直,垂足为
,则
的最大值为( )











A.1 | B.2 | C.![]() | D.8 |
已知抛物线
,
为其焦点,
为其准线,过
任作一条直线交抛物线于
两点,
、
分别为
、
在
上的射影,
为
的中点,给出下列命题:
(1)
;(2)
;(3)
;
(4)
与
的交点的
轴上;(5)
与
交于原点.
其中真命题的序号为_________.












(1)



(4)





其中真命题的序号为_________.
如图所示,已知点
是抛物线
上一定点,直线
的倾斜角互补,且与抛物线另交于
,
两个不同的点.

(1)求点
到其准线的距离;
(2)求证:直线
的斜率为定值.






(1)求点

(2)求证:直线
