- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线的定义
- 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线C:
的焦点为F,定点
,若直线FM与抛物线C相交于A,B两点
点B在F,M中间
,且与抛物线C的准线交于点N,若
,则AF的长为( )





A.![]() | B.1 | C.![]() | D.![]() |
已知抛物线
,
为其焦点,
为其准线,过
任作一条直线交抛物线于
两点,
、
分别为
、
在
上的射影,
为
的中点,给出下列命题:
(1)
;(2)
;(3)
;
(4)
与
的交点的
轴上;(5)
与
交于原点.
其中真命题的序号为_________.












(1)



(4)





其中真命题的序号为_________.
如图所示,已知点
是抛物线
上一定点,直线
的倾斜角互补,且与抛物线另交于
,
两个不同的点.

(1)求点
到其准线的距离;
(2)求证:直线
的斜率为定值.






(1)求点

(2)求证:直线

设抛物线
的焦点为
,过点
的直线与抛物线相交于
,
两点,与抛物线的准线相交于点
,
,则
与
的面积之比
等于( )










A.![]() | B.![]() | C.![]() | D.![]() |
已知动圆P与圆
:
内切,且与直线
相切,设动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过曲线
上一点
(
)作两条直线
,
与曲线
分别交于不同的两点
,
,若直线
,
的斜率分别为
,
,且
.证明:直线
过定点.





(1)求曲线

(2)过曲线














已知动点
到点
的距离比到直线
的距离小
,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过曲线
上一点
(
)作两条直线
,
与曲线
分别交于不同的两点
,
,若直线
,
的斜率分别为
,
,且
.证明:直线
过定点.






(1)求曲线

(2)过曲线













