已知圆,圆,动圆与圆外切并且与圆内切,求动圆圆心的轨迹方程.
当前题号:1 | 题型:解答题 | 难度:0.99
已知椭圆的右焦点与短轴两端点构成一个面积为的等腰直角三角形,为坐标原点.
(1)求椭圆的方程;
(2)设点在椭圆上,点在直线上,且,求证:为定值;
(3)设点在椭圆上运动,,且点到直线的距离为常数,求动点的轨迹方程.
当前题号:2 | 题型:解答题 | 难度:0.99
已知在平面直角坐标系中,动点与两定点连线的斜率之积为,记点的轨迹为曲线.
(1)求曲线的方程;
(2)若过点的直线与曲线交于两点,曲线上是否存在点使得四边形为平行四边形?若存在,求直线的方程,若不存在,说明理由.
当前题号:3 | 题型:解答题 | 难度:0.99
已知点和圆,点在圆上运动,点在半径上,且,求动点的轨迹方程.
当前题号:4 | 题型:解答题 | 难度:0.99
已知圆x轴的正半轴交于点A,过圆O上任意一点Px轴的垂线,垂足为Q,线段PQ的中点的轨迹记为曲线,设过原点O且异于两坐标轴的直线与曲线交于BC两点,直线AB与圆O的另一个交点为M,直线AC与圆O的另一个交点为N,设直线ABAC的斜率分别为.
(1)求的值;
(2)判断是否为定值?若是,求出此定值;否则,请说明理由.
当前题号:5 | 题型:解答题 | 难度:0.99
已知圆的圆心为为圆上任意一点,,线段的垂直平分线交于点.
(1)求点的轨迹方程;
(2)记点的轨迹为曲线,点.若点为直线上一动点,且不在轴上,直线分别交曲线两点,求四边形面积的最大值.
当前题号:6 | 题型:解答题 | 难度:0.99
在直角坐标系中,已知圆与直线相切,点A为圆上一动点,轴于点N,且动点满足,设动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设PQ是曲线C上两动点,线段的中点为T的斜率分别为,且,求的取值范围.
当前题号:7 | 题型:解答题 | 难度:0.99
在平面直角坐标系中,为坐标原点,CD两点的坐标为,曲线上的动点P满足.又曲线上的点AB满足.
(1)求曲线的方程;
(2)若点A在第一象限,且,求点A的坐标;
(3)求证:原点到直线AB的距离为定值.
当前题号:8 | 题型:解答题 | 难度:0.99
平面直角坐标系中,已知直线,定点,动点到直线的距离是到定点的距离的2倍;
(1)求动点的轨迹的方程;
(2)若为轨迹上的动点,直线过点且与轨迹只有一个公共点,求证:此时点和点到直线的距离之积为定值;
当前题号:9 | 题型:解答题 | 难度:0.99
已知椭圆的短轴顶点分别为,且短轴长为为椭圆上异于的任意-一点,直线的斜率之积为
(1)求椭圆的方程;
(2)设为坐标原点,圆的切线与椭圆C相交于两点,求面积的最大值.
当前题号:10 | 题型:解答题 | 难度:0.99