- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- + 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的右焦点与短轴两端点构成一个面积为
的等腰直角三角形,
为坐标原点.
(1)求椭圆
的方程;
(2)设点
在椭圆
上,点
在直线
上,且
,求证:
为定值;
(3)设点
在椭圆
上运动,
,且点
到直线
的距离为常数
,求动点
的轨迹方程.





(1)求椭圆

(2)设点






(3)设点








已知在平面直角坐标系
中,动点
与两定点
连线的斜率之积为
,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若过点
的直线
与曲线
交于
两点,曲线
上是否存在点
使得四边形
为平行四边形?若存在,求直线
的方程,若不存在,说明理由.






(1)求曲线

(2)若过点








已知圆
与x轴的正半轴交于点A,过圆O上任意一点P作x轴的垂线,垂足为Q,线段PQ的中点的轨迹记为曲线
,设过原点O且异于两坐标轴的直线与曲线
交于B,C两点,直线AB与圆O的另一个交点为M,直线AC与圆O的另一个交点为N,设直线AB,AC的斜率分别为
.
(1)求
的值;
(2)判断
是否为定值?若是,求出此定值;否则,请说明理由.





(1)求

(2)判断

已知圆
的圆心为
,
为圆上任意一点,
,线段
的垂直平分线交
于点
.
(1)求点
的轨迹方程;
(2)记点
的轨迹为曲线
,点
,
.若点
为直线
上一动点,且
不在
轴上,直线
、
分别交曲线
于
、
两点,求四边形
面积的最大值.







(1)求点

(2)记点














在直角坐标系
中,已知圆
与直线
相切,点A为圆
上一动点,
轴于点N,且动点满足
,设动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设P,Q是曲线C上两动点,线段
的中点为T,
,
的斜率分别为
,且
,求
的取值范围.






(1)求曲线C的方程;
(2)设P,Q是曲线C上两动点,线段






在平面直角坐标系
中,
为坐标原点,C、D两点的坐标为
,曲线
上的动点P满足
.又曲线
上的点A、B满足
.
(1)求曲线
的方程;
(2)若点A在第一象限,且
,求点A的坐标;
(3)求证:原点到直线AB的距离为定值.







(1)求曲线

(2)若点A在第一象限,且

(3)求证:原点到直线AB的距离为定值.
平面直角坐标系中,已知直线
,定点
,动点
到直线
的距离是到定点
的距离的2倍;
(1)求动点
的轨迹
的方程;
(2)若
为轨迹
上的动点,直线
过点
且与轨迹
只有一个公共点,求证:此时点
和点
到直线
的距离之积为定值;





(1)求动点


(2)若








已知椭圆
的短轴顶点分别为
,且短轴长为
为椭圆上异于
的任意-一点,直线
的斜率之积为
(1)求椭圆
的方程;
(2)设
为坐标原点,圆
的切线
与椭圆C相交于
两点,求
面积的最大值.






(1)求椭圆

(2)设




