刷题首页
题库
高中数学
题干
已知圆
的圆心为
,
为圆上任意一点,
,线段
的垂直平分线交
于点
.
(1)求点
的轨迹方程;
(2)记点
的轨迹为曲线
,点
,
.若点
为直线
上一动点,且
不在
轴上,直线
、
分别交曲线
于
、
两点,求四边形
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-11 10:43:17
答案(点此获取答案解析)
同类题1
已知
为椭圆
的右焦点,点
在
上,且
轴.
(1)求
的方程
(2)过
的直线
交
于
两点,交直线
于点
.证明:直线
的斜率成等差数列.
同类题2
已知椭圆
:
的左、右焦点分别为
、
,以点
为圆心,以3为半径的圆与以点
为圆心,以1为半径的圆相交,且交点在椭圆
上.设点
,在
中,
.
(1)求椭圆
的方程;
(2)设过点
的直线
不经过点
,且与椭圆
相交于
,
两点,若直线
与
的斜率分别为
,
,求
的值.
同类题3
动圆
与
相外切,与
相内切.
(1)求动圆圆心
的轨迹
的方程;
(2)
是动圆
的半径最小时的圆,倾斜角为
且过点
的直线l与
相切,与轨迹
交于
,
两点,求
的值.
同类题4
设圆(
x
+1)
2
+
y
2
=25的圆心为
C
,
A
(1,0)是圆内一定点,
Q
为圆周上任一点.线段
AQ
的垂直平分线与
CQ
的连线交于点
M
,则
M
的轨迹方程为( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的定义
利用椭圆定义求方程
轨迹问题——椭圆