刷题首页
题库
高中数学
题干
已知椭圆
的短轴顶点分别为
,且短轴长为
为椭圆上异于
的任意-一点,直线
的斜率之积为
(1)求椭圆
的方程;
(2)设
为坐标原点,圆
的切线
与椭圆
C
相交于
两点,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 03:38:18
答案(点此获取答案解析)
同类题1
已知动圆
在圆
:
外部且与圆
相切,同时还在圆
:
内部与圆
相切.
(1)求动圆圆心
的轨迹方程;
(2)记(1)中求出的轨迹为
,
与
轴的两个交点分别为
、
,
是
上异于
、
的动点,又直线
与
轴交于点
,直线
、
分别交直线
于
、
两点,求证:
为定值.
同类题2
在圆
上任取一点
,过点
作
轴的垂线段
,
为垂足.当点
在圆上运动时,线段
的中点
形成轨迹
.
(1)求轨迹
的方程;
(2)若直线
与曲线
交于
两点,
为曲线
上一动点,求
面积的最大值
同类题3
已知
,
,动点
满足直线
与直线
的斜率之积为
,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若过点
的直线
与曲线
交于
,
两点,过点
且与直线
垂直的直线与
相交于点
,求
的最小值及此时直线
的方程.
同类题4
已知圆
和点
,
是圆
上任意一点,线段
的垂直平分线交
于点
,
,则点
的轨迹为( )
A.椭圆
B.双曲线
C.抛物线
D.圆
同类题5
已知点
,
是坐标轴上两点,动点
满足直线
与
的斜率之积为
(其中
为常数,且
).记
的轨迹为曲线
.
(1)求
的方程,并说明
是什么曲线;
(2)过点
斜率为
的直线与曲线
交于点
,点
在曲线
上,且
,若
,求
的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆