- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- + 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆的中心在原点,左焦点为
,右顶点为
.
(1)求该椭圆的标准方程;
(2)若
是椭圆上的动点,过P点向椭圆的长轴做垂线,垂足为Q求线段PQ的中点
的轨迹方程;


(1)求该椭圆的标准方程;
(2)若


已知椭圆的中心在原点,左焦点为
,右顶点为
.
(1)求该椭圆的标准方程;
(2)若
是椭圆上的动点,过
点向椭圆的长轴做垂线,垂足为
求线段
的中点
的轨迹方程;


(1)求该椭圆的标准方程;
(2)若





已知椭圆
的两焦点是
是椭圆上的一点.
(1)求椭圆的实轴的长和焦点坐标;
(2)若
求
的长;
(3)一双曲线与椭圆有公共焦点,且以
为渐近线,求此双曲线的标准方程.


(1)求椭圆的实轴的长和焦点坐标;
(2)若


(3)一双曲线与椭圆有公共焦点,且以

已知椭圆C:
(a>b>0)的焦点F与抛物线E:y2=4x的焦点重合,直线x-y+
=0与以原点O为圆心,以椭圆的离心率e为半径的圆相切.
(Ⅰ)直线x=1与椭圆交于不同的两点M,N,椭圆C的左焦点F1,求△F1MN的内切圆的面积;
(Ⅱ)直线l与抛物线E交于不同两点A,B,直线l′与抛物线E交于不同两点C,D,直线l与直线l′交于点M,过焦点F分别作l与l′的平行线交抛物线E于P,Q,G,H四点.证明:


(Ⅰ)直线x=1与椭圆交于不同的两点M,N,椭圆C的左焦点F1,求△F1MN的内切圆的面积;
(Ⅱ)直线l与抛物线E交于不同两点A,B,直线l′与抛物线E交于不同两点C,D,直线l与直线l′交于点M,过焦点F分别作l与l′的平行线交抛物线E于P,Q,G,H四点.证明:
