- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- + 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,椭圆
的离心率为
,顶点为
,
,
,
,且
.

(1)求椭圆
的方程;
(2)若
是椭圆
上除顶点外的任意一点,直线
交
轴于点
,直线
交
于点
.设
的斜率为
,
的斜率为
,试问
是否为定值?并说明理由.








(1)求椭圆

(2)若













已知椭圆
:
,其左、右焦点分别为
,上顶点为
,
为坐标原点,过
的直线
交椭圆
于
两点,
.
(1)若直线
垂直于
轴,求
的值;
(2)若
,直线
的斜率为
,则椭圆
上是否存在一点
,使得
关于直线
成轴对称?如果存在,求出点
的坐标;如果不存在,请说明理由;
(3)设直线
:
上总存在点
满足
,当
的取值最小时,求直线
的倾斜角
.










(1)若直线



(2)若








(3)设直线






