- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左右顶点分别为
,左右焦点为分别为
,焦距为2,离心率为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若
为椭圆上一动点,直线
过点
且与
轴垂直,
为直线
与
的交点,
为直线
与直线
的交点,求证:点
在一个定圆上.




(Ⅰ)求椭圆

(Ⅱ)若











已知
、
是双曲线
的左右焦点,过点
与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点
,若点
在以线段
为直径的圆外,则双曲线离心率的取值范围是( )







A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
的离心率
,且椭圆过点
(1)求椭圆
的标准方程;
(2)设直线
与
交于
、
两点,点
在椭圆
上,
是坐标原点,若
,判定四边形
的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.



(1)求椭圆

(2)设直线









如图,设抛物线
与
的公共点
的横坐标为
,过
且与
相切的直线交
于另一点
,过
且与
相切的直线交
于另一点
,记
为
的面积.

(Ⅰ)求
的值(用
表示);
(Ⅱ)若
,求
的取值范围.
注:若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行也不重合,则称该直线与抛物线相切.















(Ⅰ)求


(Ⅱ)若


注:若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行也不重合,则称该直线与抛物线相切.
已知双曲线
的左、右顶点分别为A,
点F为双曲线的左焦点,过点F作垂直于x轴的直线分别在第二、第三象限交双曲线C于P、Q两点,连接PB交y轴于点
连接AE,EA延长线交QF于点M,且
,则双曲线C的离心率为







A.![]() | B.2 | C.3 | D.5 |