- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与圆的位置关系
- 圆的切线方程
- + 圆的弦长与弦心距
- 圆的弦长与中点弦
- 已知圆的弦长求方程或参数
- 圆内接三角形的面积
- 直线与圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
以椭圆
:
的中心
为圆心,
为半径的圆称为该椭圆的“准圆”.设椭圆
的左顶点为
,左焦点为
,上顶点为
,且满足
,
.
(1)求椭圆
及其“准圆”的方程;
(2)若椭圆
的“准圆”的一条弦
与椭圆
交于
、
两点,试证明:当
时,弦
的长为定值.










(1)求椭圆

(2)若椭圆







已知双曲线
1(a>0,b>0)的渐近线被圆C:x2+y2﹣12x=0截得的弦长为8,双曲线的右焦点为C的圆心,则该双曲线的方程为( )

A.![]() | B.![]() |
C.![]() | D.![]() |