- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与圆的位置关系
- + 由直线与圆的位置关系求参数
- 求直线与圆交点的坐标
- 直线与圆相交的性质——韦达定理及应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义:直线关于圆的圆心距单位
圆心到直线的距离与圆的半径之比.
(1)设圆
,求过点
的直线关于圆
的圆心距单位
的直线方程.
(2)若圆
与
轴相切于点
,且直线
关于圆
的圆心距单位
,求此圆
的方程.
(3)是否存在点
,使过点
的任意两条互相垂直的直线分别关于相应两圆
与
的圆心距单位始终相等?若存在,求出相应的
点坐标;若不存在,请说明理由.

(1)设圆




(2)若圆







(3)是否存在点





已知直线
为公海与领海的分界线,一艘巡逻艇在原点
处发现了北偏东
海面上
处有一艘走私船,走私船正向停泊在公海上接应的走私海轮
航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若
与公海的最近距离20海里,要保证在领海内捕获走私船,则
,
之间的最远距离是多少海里?






(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若



如图,在平面直角坐标系
中,已知椭圆
:
,设
是椭圆
上任一点,从原点
向圆
:
作两条切线,分别交椭圆于点
,
.

(1)若直线
,
互相垂直,且圆心落在第一象限,求圆
的圆心坐标;
(2)若直线
,
的斜率都存在,并记为
,
.
①求证:
;
②试问
是否为定值?若是,求出该定值;若不是,请说明理由.











(1)若直线



(2)若直线




①求证:

②试问

如图,在平面直角坐标系
中,己知点
,
,
,
分别为线段
,
上的动点,满足
.

(1)若
点恰好与
点重合,求半径为
且与直线
相切于
点的圆的方程;
(2)设
,求证:
的外接圆恒过定点(异于原点).









(1)若





(2)设


已知圆
的圆心在坐标原点
,且恰好与直线
:
相切.
(1)求圆的标准方程;
(2)设点
为圆上一动点,
轴于
,若动点
满足
(其中
为非零常数),试求动点
的轨迹方程
.




(1)求圆的标准方程;
(2)设点







