- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 由圆心(或半径)求圆的方程
- 求过已知三点的圆的标准方程
- 由标准方程确定圆心和半径
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,在平面直角坐标系
中,平行于
轴且过点
的入射光线
被直线
反射,反射光线
交
轴于
点,圆
过点
,且与
、
相切.

(Ⅰ)求
所在直线的方程;
(Ⅱ)求圆
的方程.













(Ⅰ)求

(Ⅱ)求圆

已知直线
:
和圆
:
.
(1)求证:直线
恒过一定点
;
(2)试求当
为何值时,直线
被圆
所截得的弦长最短;
(3)在(2)的前提下,直线
是过点
,且与直线
平行的直线,求圆心在直线
上,且与圆
相外切的动圆中半径最小圆的标准方程.




(1)求证:直线


(2)试求当



(3)在(2)的前提下,直线





已知点
及圆
.
(1)若直线
过点
且与圆心
的距离为1,求直线
的方程;
(2)设过点
的直线
与圆
交于
两点,当
时,求以线段
为直径的圆
的方程;
(3)设直线
与圆
交于
两点,是否存在实数
,使得过点
的直线
垂直平分弦
?若存在,求出实数
的值;若不存在,请说明理由.


(1)若直线




(2)设过点







(3)设直线








已知圆心在x轴正半轴上的圆C与直线5x+12y+21=0相切,与y轴交于M,N两点,且∠MCN=120°.

(1)求圆C的标准方程;
(2)过点P(0,3)的直线l与圆C交于不同的两点D,E,若
时,求直线l的方程;
(3)已知Q是圆C上任意一点,问:在x轴上是否存在两定点A,B,使得
?若存在,求出A,B两点的坐标;若不存在,请说明理由.

(1)求圆C的标准方程;
(2)过点P(0,3)的直线l与圆C交于不同的两点D,E,若

(3)已知Q是圆C上任意一点,问:在x轴上是否存在两定点A,B,使得
