- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- + 圆与方程
- 圆的方程
- 直线与圆的位置关系
- 圆与圆的位置关系
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在极坐标系中,直线的方程为2ρcosθ+5ρsinθ﹣8=0,曲线E的方程为ρ=4cosθ.
(1)以极点O为直角坐标原点,极轴为x轴正半轴建立平面直角坐标系,分别写出直线l与曲线E的直角坐标方程;
(2)设直线l与曲线E交于A,B两点,点C在曲线E上,求△ABC面积的最大值,并求此时点C的直角坐标.
(1)以极点O为直角坐标原点,极轴为x轴正半轴建立平面直角坐标系,分别写出直线l与曲线E的直角坐标方程;
(2)设直线l与曲线E交于A,B两点,点C在曲线E上,求△ABC面积的最大值,并求此时点C的直角坐标.
已知直线l:
与圆C:
交于A,B两点.
(1)求
的面积;
(2)若动点P为圆C上一点,点
为定点,则线段
中点的轨迹是什么,并求出该轨迹方程.


(1)求

(2)若动点P为圆C上一点,点


已知动点P到两定点M(﹣3,0),N(3,0)的距离满足|PM|=2|PN|.
(1)求证:点P的轨迹为圆;
(2)记(1)中轨迹为⊙C,过定点(0,1)的直线l与⊙C交于A,B两点,求△ABC面积的最大值,并求此时直线l的方程.
(1)求证:点P的轨迹为圆;
(2)记(1)中轨迹为⊙C,过定点(0,1)的直线l与⊙C交于A,B两点,求△ABC面积的最大值,并求此时直线l的方程.